When we had a sequence like:
s1 = VLDRS [r0, 1], Q0<imp-def>
s3 = VLDRS [r0, 2], Q0<imp-use,kill>, Q0<imp-def>
s0 = VLDRS [r0, 0], Q0<imp-use,kill>, Q0<imp-def>
s2 = VLDRS [r0, 4], Q0<imp-use,kill>, Q0<imp-def>
we were gathering the {s0, s1} loads below the s3 load. This is fine,
but confused the verifier since now the s3 load had Q0<imp-use> with
no definition above it.
This should mark such uses <undef> as well. The liveness structure at
the beginning and end of the block is unaffected, and the true sN
definitions should prevent any dodgy reorderings being introduced
elsewhere.
rdar://problem/15124449
llvm-svn: 192344
it at the moment.
This allows to form more paired loads even when stack coloring pass destroys the
memoryoperand's value.
<rdar://problem/13978317>
llvm-svn: 184492
sure the base register and would-be writeback register don't conflict for
stores. This was already being done for loads.
Unfortunately, it is rather difficult to create a test case for this issue. It
was exposed in 450.soplex at LTO and requires unlucky register allocation.
<rdar://13394908>
llvm-svn: 177874
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
This function is often used to decorate dangling instructions, so a
context reference is required to allocate memory for the operands.
Also add a corresponding MachineInstrBuilder method.
llvm-svn: 170797
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
the register info for getEncodingValue. This builds on the
small patch of yesterday to set HWEncoding in the register
file.
One (deprecated) use was turned into a hard number to avoid
needing register info in the old JIT.
llvm-svn: 161628
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
llvm-svn: 156328
The load/store optimizer splits LDRD/STRD into two instructions when the
register pairing doesn't work out. For negative offsets in Thumb2, it uses
t2STRi8 to do that. That's fine, except for the case when the offset is in
the range [-4,-1]. In that case, we'll also form a second t2STRi8 with
the original offset plus 4, resulting in a t2STRi8 with a non-negative
offset, which ends up as if it were an STRT, which is completely bogus.
Similarly for loads.
No testcase, unfortunately, as any I've been able to construct is both large
and extremely fragile.
rdar://11193937
llvm-svn: 154141
When an strd instruction doesn't get the registers it wants, it can be
expanded into two str instructions. Make sure the first str doesn't kill
the base register in the case where the base and data registers are
identical:
t2STRi12 %R0<kill>, %R0, 4, pred:14, pred:%noreg
t2STRi12 %R2<kill>, %R0, 8, pred:14, pred:%noreg
<rdar://problem/11101911>
llvm-svn: 153611
When a number of sub-register VLRDS instructions are combined into a
VLDM, preserve any super-register implicit defs. This is required to
keep the register scavenger and machine code verifier happy.
Enable machine code verification after ARMLoadStoreOptimizer.
ARM/2012-01-26-CopyPropKills.ll was failing because of this.
llvm-svn: 153610
Revert r153519: "ARMLoadStoreOptimizer invalidates register liveness."
These patches caused miscompilations in povray by turning off branch
folding's updating of live-in lists.
It turns out the the late scheduler depends on the live-in lists, even
if it doesn't need correct kill flags.
<rdar://problem/11139228>
llvm-svn: 153593
This pass tries to update kill flags, but there are still many bugs.
Passes after the load/store optimizer don't need accurate liveness, so
don't even try.
<rdar://problem/11101911>
llvm-svn: 153519
Allow LDRD to be formed from pairs with different LDR encodings. This was the original intention of the pass. Somewhere along the way, the LDR opcodes were refined which broke the optimization. We really don't care what the original opcodes are as long as they both map to the same LDRD and the immediate still fits.
Fixes rdar://10435045 ARMLoadStoreOptimization cannot handle mixed LDRi8/LDRi12
llvm-svn: 147922
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
Tidy up the code a bit and push the definition of the value next to the uses
to try to minimize this sort of issue from arising again while I'm at it.
rdar://9945172
llvm-svn: 137525
Refactor STR[B] pre and post indexed instructions to use addressing modes for
memory operands, which is necessary for assembly parsing and is more consistent
with the rest of the memory instruction definitions. Make some incremental
progress on refactoring away the mega-operand addrmode2 along the way, which
is nice.
llvm-svn: 136978
Unlike Thumb1, Thumb2 does not have dedicated encodings for adjusting the
stack pointer. It can just use the normal add-register-immediate encoding
since it can use all registers as a source, not just R0-R7. The extra
instruction definitions are just duplicates of the normal instructions with
the (not well enforced) constraint that the source register was SP.
llvm-svn: 134114
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
This is necessary to avoid a crash in certain tangled situations where a kill
flag is first correctly moved to a merged instruction, and then needs to be
moved again:
STR %R0, a...
STR %R0<kill>, b...
First becomes:
STR %R0, b...
STM a, %R0<kill>, ...
and then:
STM a, %R0, ...
STM b, %R0<kill>, ...
We can now remove the kill flag from the merged STM when needed. 8960050.
llvm-svn: 125591
Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
llvm-svn: 123044
'db', 'ib', 'da') instead of having that mode as a separate field in the
instruction. It's more convenient for the asm parser and much more readable for
humans.
<rdar://problem/8654088>
llvm-svn: 119310
the LDR instructions have. This makes the literal/register forms of the
instructions explicit and allows us to assign scheduling itineraries
appropriately. rdar://8477752
llvm-svn: 117505
explicit about the operands. Split out the different variants into separate
instructions. This gives us the ability to, among other things, assign
different scheduling itineraries to the variants. rdar://8477752.
llvm-svn: 117409
functions in ARMBaseInfo.h so it can be used in the MC library as well.
For anything bigger than this, we may want a means to have a small support
library for shared helper functions like this. Cross that bridge when we
come to it.
llvm-svn: 114016
to use AddrMode4, there was a count of the registers stored in one of the
operands. I changed that to just count the operands but forgot to adjust for
the size of D registers. This was noticed by Evan as a performance problem
but it is a potential correctness bug as well, since it is possible that this
could merge a base update with a non-matching immediate.
llvm-svn: 113576
kill flag.
This could cause duplicate kill flags when the same register was used twice in a
continuous sequence of STRs.
There is no small test case. <rdar://problem/8218046>
llvm-svn: 112534
the special values that for ARM would be used with IB or DA modes. Fall
through and consider materializing a new base address is it would be
profitable.
llvm-svn: 112329
all the other LDM/STM instructions. This fixes asm printer crashes when
compiling with -O0. I've changed one of the NEON tests (vst3.ll) to run
with -O0 to check this in the future.
Prior to this change VLDM/VSTM used addressing mode #5, but not really.
The offset field was used to hold a count of the number of registers being
loaded or stored, and the AM5 opcode field was expanded to specify the IA
or DB mode, instead of the standard ADD/SUB specifier. Much of the backend
was not aware of these special cases. The crashes occured when rewriting
a frameindex caused the AM5 offset field to be changed so that it did not
have a valid submode. I don't know exactly what changed to expose this now.
Maybe we've never done much with -O0 and NEON. Regardless, there's no longer
any reason to keep a count of the VLDM/VSTM registers, so we can use
addressing mode #4 and clean things up in a lot of places.
llvm-svn: 112322
dbg_value immediately follows a sequence of ldr/str instructions that should
be combined into an ldm/stm and is the last instruction in the block, then
combine may end up being skipped.
llvm-svn: 105758
writebacks to the address register. This gets rid of the hack that the
first register on the list was the magic writeback register operand. There
was an implicit constraint that if that operand was not reg0 it had to match
the base register operand. The post-RA scheduler's antidependency breaker
did not understand that constraint and sometimes changed one without the
other. This also fixes Radar 7495976 and should help the verifier work
better for ARM code.
There are now new ld/st instructions explicit writeback operands and explicit
constraints that tie those registers together.
llvm-svn: 98409
an undef value. This is only going to come up for bugpoint-reduced tests --
correct programs will not access memory at undefined addresses -- so it's not
worth the effort of doing anything more aggressive.
llvm-svn: 97745
An unaligned ldr causes a trap, and is then emulated by the kernel with
awesome performance. The darwin kernel does not emulate unaligned ldm/stm
Thumb2 instructions, so don't generate them.
This fixes the miscompilation of Multisource/Applications/JM/lencod for Thumb2.
Generating unaligned ldr/str pairs from a 16-bit aligned memcpy is probably
also a bad idea, but that is beyond the scope of this patch.
llvm-svn: 93393
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
llvm-svn: 82794
- Drop the Candidates argument and fix all callers. Now that RegScavenger
tracks available registers accurately, there is no need to restict the
search.
- Make sure that no aliases of the found register are in use. This was a potential bug.
llvm-svn: 79369
This patch takes pain to ensure all the PEI lowering code does the right thing when lowering frame indices, insert code to manipulate stack pointers, etc. It's also custom lowering dynamic stack alloc into pseudo instructions so we can insert the right instructions at scheduling time.
This fixes PR4659 and PR4682.
llvm-svn: 78361
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
- Register allocator should resolve the second part of the hint (register number) before passing it to the target since it knows virtual register to physical register mapping.
- More fixes to get ARM load / store double word working.
llvm-svn: 73671
- Change register allocation hint to a pair of unsigned integers. The hint type is zero (which means prefer the register specified as second part of the pair) or entirely target dependent.
- Allow targets to specify alternative register allocation orders based on allocation hint.
Part 2.
- Use the register allocation hint system to implement more aggressive load / store multiple formation.
- Aggressively form LDRD / STRD. These are formed *before* register allocation. It has to be done this way to shorten live interval of base and offset registers. e.g.
v1025 = LDR v1024, 0
v1026 = LDR v1024, 0
=>
v1025,v1026 = LDRD v1024, 0
If this transformation isn't done before allocation, v1024 will overlap v1025 which means it more difficult to allocate a register pair.
- Even with the register allocation hint, it may not be possible to get the desired allocation. In that case, the post-allocation load / store multiple pass must fix the ldrd / strd instructions. They can either become ldm / stm instructions or back to a pair of ldr / str instructions.
This is work in progress, not yet enabled.
llvm-svn: 73381