For Cylone, the instruction "movi.2d vD, #0" is executed incorrectly in some rare
circumstances. Work around the issue conservatively by avoiding the instruction entirely.
This patch changes CodeGen so that problematic instructions are never
generated, and the AsmParser so that an equivalent instruction is used (with a
warning).
llvm-svn: 320965
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This is similar to what was done for ARM in SVN r269574; the code
and the test are straight copypaste to the corresponding AArch64
code and test directory.
Differential revision: https://reviews.llvm.org/D37204
llvm-svn: 312223
Instead of loading 0 from a constant pool, it's of course much better to
materialize it using an fmov and the zero register.
Thanks to Ahmed Bougacha for the suggestion.
Differential Revision: https://reviews.llvm.org/D37102
llvm-svn: 311662
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
This is used in the Linux kernel, and effectively just means "print an
address". This brings back r193593.
Reviewed by: Renato Golin
Reviewers: t.p.northover, rengolin, richard.barton.arm, kristof.beyls
Subscribers: aemerson, javed.absar, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D33558
llvm-svn: 303901
Remove "_NC" suffix and semantics from TLSDESC_LD{64,32}_LO12 and
TLSDESC_ADD_LO12 relocations
Rearrange ordering in AArch64.def to follow relocation encoding
Fix name:
R_AARCH64_P32_LD64_GOT_LO12_NC => R_AARCH64_P32_LD32_GOT_LO12_NC
Add support for several "TLS", "TLSGD", and "TLSLD" relocations for
ILP32
Fix return values from isNonILP32reloc
Add implementations for
R_AARCH64_ADR_PREL_PG_HI21_NC, R_AARCH64_P32_LD32_GOT_LO12_NC,
R_AARCH64_P32_TLSIE_LD32_GOTTPREL_LO12_NC,
R_AARCH64_P32_TLSDESC_LD32_LO12, R_AARCH64_LD64_GOT_LO12_NC,
*TLSLD_LDST128_DTPREL_LO12, *TLSLD_LDST128_DTPREL_LO12_NC,
*TLSLE_LDST128_TPREL_LO12, *TLSLE_LDST128_TPREL_LO12_NC
Modify error messages to give name of equivalent relocation in the
ABI not being used, along with better checking for non-existent
requested relocations.
Added assembler support for "pg_hi21_nc"
Relocation definitions added without implementations:
R_AARCH64_P32_TLSDESC_ADR_PREL21, R_AARCH64_P32_TLSGD_ADR_PREL21,
R_AARCH64_P32_TLSGD_ADD_LO12_NC, R_AARCH64_P32_TLSLD_ADR_PREL21,
R_AARCH64_P32_TLSLD_ADR_PAGE21, R_AARCH64_P32_TLSLD_ADD_LO12_NC,
R_AARCH64_P32_TLSLD_LD_PREL19, R_AARCH64_P32_TLSDESC_LD_PREL19,
R_AARCH64_P32_TLSGD_ADR_PAGE21, R_AARCH64_P32_TLS_DTPREL,
R_AARCH64_P32_TLS_DTPMOD, R_AARCH64_P32_TLS_TPREL,
R_AARCH64_P32_TLSDESC
Fix encoding:
R_AARCH64_P32_TLSDESC_ADR_PAGE21
Reviewers: Peter Smith
Patch by: Joel Jones (jjones@cavium.com)
Differential Revision: https://reviews.llvm.org/D32072
llvm-svn: 301980
TLSDESC_ADD_LO12 relocations
Rearrange ordering in AArch64.def to follow relocation encoding
Fix name:
R_AARCH64_P32_LD64_GOT_LO12_NC => R_AARCH64_P32_LD32_GOT_LO12_NC
Add support for several "TLS", "TLSGD", and "TLSLD" relocations for
ILP32
Fix return values from isNonILP32reloc
Add implementations for
R_AARCH64_ADR_PREL_PG_HI21_NC, R_AARCH64_P32_LD32_GOT_LO12_NC,
R_AARCH64_P32_TLSIE_LD32_GOTTPREL_LO12_NC,
R_AARCH64_P32_TLSDESC_LD32_LO12, R_AARCH64_LD64_GOT_LO12_NC,
*TLSLD_LDST128_DTPREL_LO12, *TLSLD_LDST128_DTPREL_LO12_NC,
*TLSLE_LDST128_TPREL_LO12, *TLSLE_LDST128_TPREL_LO12_NC
Modify error messages to give name of equivalent relocation in the
ABI not being used, along with better checking for non-existent
requested relocations.
Added assembler support for "pg_hi21_nc"
Relocation definitions added without implementations:
R_AARCH64_P32_TLSDESC_ADR_PREL21, R_AARCH64_P32_TLSGD_ADR_PREL21,
R_AARCH64_P32_TLSGD_ADD_LO12_NC, R_AARCH64_P32_TLSLD_ADR_PREL21,
R_AARCH64_P32_TLSLD_ADR_PAGE21, R_AARCH64_P32_TLSLD_ADD_LO12_NC,
R_AARCH64_P32_TLSLD_LD_PREL19, R_AARCH64_P32_TLSDESC_LD_PREL19,
R_AARCH64_P32_TLSGD_ADR_PAGE21, R_AARCH64_P32_TLS_DTPREL,
R_AARCH64_P32_TLS_DTPMOD, R_AARCH64_P32_TLS_TPREL,
R_AARCH64_P32_TLSDESC
Fix encoding:
R_AARCH64_P32_TLSDESC_ADR_PAGE21
Reviewers: Peter Smith
Patch by: Joel Jones (jjones@cavium.com)
Differential Revision: https://reviews.llvm.org/D32072
llvm-svn: 301939
Summary:
No need to have this per-architecture. While there, unify 32-bit ARM's
behaviour with what changed elsewhere and start function names lowercase
as per the coding standards. Individual entry emission code goes to the
entry's own class.
Fully tested on amd64, cross-builds on both ARMs and PowerPC.
Reviewers: dberris
Subscribers: aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28209
llvm-svn: 290858
This patch adds a test for the assembly code emitted with XRay
instrumentation. It also fixes a bug where the operand of a jump
instruction must be not the number of bytes to jump over, but rather the
number of 4-byte instructions.
Author: rSerge
Reviewers: dberris, rengolin
Differential Revision: https://reviews.llvm.org/D26805
llvm-svn: 287516
On CPUs with the zero cycle zeroing feature enabled "movi v.2d" should
be used to zero a vector register. This was previously done at
instruction selection time, however the register coalescer sometimes
widened multiple vregs to the Q width because of that leading to extra
spills. This patch leaves the decision on how to zero a register to the
AsmPrinter phase where it doesn't affect register allocation anymore.
This patch also sets isAsCheapAsAMove=1 on FMOVS0, FMOVD0.
This fixes http://llvm.org/PR27454, rdar://25866262
Differential Revision: http://reviews.llvm.org/D21826
llvm-svn: 274686
Of course the assembly was right but because the opcode was MOVZWi it was
encoded as "movz w16, #65535, lsl #32" which is an unallocated encoding and
would go horribly wrong on a CPU.
No idea how this bug survived this long. It seems nobody is using that aspect
of patchpoints.
llvm-svn: 272831
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Gut all the non-pointer API from the variable wrappers, except an
implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note
that if you're updating out-of-tree code, `DIVariable` wraps
`MDLocalVariable` (`MDVariable` is a common base class shared with
`MDGlobalVariable`).
llvm-svn: 234840
Before this patch code wanting to create temporary labels for a given entity
(function, cu, exception range, etc) had to keep its own counter to have stable
symbol names.
createTempSymbol would still add a suffix to make sure a new symbol was always
returned, but it kept a single counter. Because of that, if we were to use
just createTempSymbol("cu_begin"), the label could change from cu_begin42 to
cu_begin43 because some other code started using temporary labels.
Simplify this by just keeping one counter per prefix and removing the various
specialized counters.
llvm-svn: 232535
As is described at http://llvm.org/bugs/show_bug.cgi?id=22408, the GNU linkers
ld.bfd and ld.gold currently only support a subset of the whole range of AArch64
ELF TLS relocations. Furthermore, they assume that some of the code sequences to
access thread-local variables are produced in a very specific sequence.
When the sequence is not as the linker expects, it can silently mis-relaxe/mis-optimize
the instructions.
Even if that wouldn't be the case, it's good to produce the exact sequence,
as that ensures that linkers can perform optimizing relaxations.
This patch:
* implements support for 16MiB TLS area size instead of 4GiB TLS area size. Ideally clang
would grow an -mtls-size option to allow support for both, but that's not part of this patch.
* by default doesn't produce local dynamic access patterns, as even modern ld.bfd and ld.gold
linkers do not support the associated relocations. An option (-aarch64-elf-ldtls-generation)
is added to enable generation of local dynamic code sequence, but is off by default.
* makes sure that the exact expected code sequence for local dynamic and general dynamic
accesses is produced, by making use of a new pseudo instruction. The patch also removes
two (AArch64ISD::TLSDESC_BLR, AArch64ISD::TLSDESC_CALL) pre-existing AArch64-specific pseudo
SDNode instructions that are superseded by the new one (TLSDESC_CALLSEQ).
llvm-svn: 231227
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
Reduce the number of nops emitted for stackmap shadows on AArch64 by counting
non-stackmap instructions up to the next branch target towards the requested
shadow.
<rdar://problem/14959522>
llvm-svn: 223156
There really is no arm64_be: it was a useful fiction to test big-endian support
while both backends existed in parallel, but now the only platform that uses
the name (iOS) doesn't have a big-endian variant, let alone one called
"arm64_be".
llvm-svn: 213748
These are tested by test/CodeGen/Generic, so we should probably know
how to deal with them. Fortunately generic code does it if asked.
llvm-svn: 209646
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576