This time, the issue is that we weren't accounting for the possibility that
aligned DPRs could have been stored after the final "push" in a prologue. When
that happened we effectively moved a "sub sp, #N" from below the aligned stores
to above them, and everything went to pot.
To make it worse, I'd actually committed something testing that we produced
wrong code, so the test update is tiny.
llvm-svn: 248437
I looked into adding a warning / error for this to FileCheck, but there doesn't
seem to be a good way to avoid it triggering on the instances of it in RUN lines.
llvm-svn: 244481
This is necessary for WatchOS support, where the compact unwind format assumes
this kind of layout. For now we only want this on Swift-like CPUs though, where
it's been the Xcode behaviour for ages. Also, since it can expand the prologue
we don't want it at -Oz.
llvm-svn: 243884
This is the first step toward supporting shrink-wrapping for this target.
The changes could be summarized by these items:
- Expand the tail-call return as part of the expand pseudo pass.
- Get rid of the assumptions that the epilogue is the exit block:
* Do not assume which registers are free in the epilogue. (This indirectly
improve the lowering of the code for the segmented stacks, see the test
cases.)
* Take into account that the basic block can be empty.
Related to <rdar://problem/20821730>
llvm-svn: 242714
This makes it more likely that we can use the 16-bit push and pop instructions
on Thumb-2, saving around 4 bytes per function.
Differential Revision: http://reviews.llvm.org/D9165
llvm-svn: 235637
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
This partially fixes PR13007 (ARM CodeGen fails with large stack
alignment): for ARM and Thumb2 targets, but not for Thumb1, as it
seems stack alignment for Thumb1 targets hasn't been supported at
all.
Producing an aligned stack pointer is done by zero-ing out the lower
bits of the stack pointer. The BIC instruction was used for this.
However, the immediate field of the BIC instruction only allows to
encode an immediate that can zero out up to a maximum of the 8 lower
bits. When a larger alignment is requested, a BIC instruction cannot
be used; llvm was silently producing incorrect code in this case.
This commit fixes code generation for large stack aligments by
using the BFC instruction instead, when the BFC instruction is
available. When not, it uses 2 instructions: a right shift,
followed by a left shift to zero out the lower bits.
The lowering of ARM::Int_eh_sjlj_dispatchsetup still has code
that unconditionally uses BIC to realign the stack pointer, so it
very likely has the same problem. However, I wasn't able to
produce a test case for that. This commit adds an assert so that
the compiler will fail the assert instead of silently generating
wrong code if this is ever reached.
llvm-svn: 225446
There's no need to do this if the user doesn't call va_start. In the
future, we're going to have thunks that forward these register
parameters with musttail calls, and they won't need these spills for
handling va_start.
Most of the test suite changes are adding va_start calls to existing
tests to keep things working.
llvm-svn: 216294
insertions.
The old behavior could cause arbitrarily bad memory usage in the DAG
combiner if there was heavy traffic of adding nodes already on the
worklist to it. This commit switches the DAG combine worklist to work
the same way as the instcombine worklist where we null-out removed
entries and only add new entries to the worklist. My measurements of
codegen time shows slight improvement. The memory utilization is
unsurprisingly dominated by other factors (the IR and DAG itself
I suspect).
This change results in subtle, frustrating churn in the particular order
in which DAG combines are applied which causes a number of minor
regressions where we fail to match a pattern previously matched by
accident. AFAICT, all of these should be using AddToWorklist to directly
or should be written in a less brittle way. None of the changes seem
drastically bad, and a few of the changes seem distinctly better.
A major change required to make this work is to significantly harden the
way in which the DAG combiner handle nodes which become dead
(zero-uses). Previously, we relied on the ability to "priority-bump"
them on the combine worklist to achieve recursive deletion of these
nodes and ensure that the frontier of remaining live nodes all were
added to the worklist. Instead, I've introduced a routine to just
implement that precise logic with no indirection. It is a significantly
simpler operation than that of the combiner worklist proper. I suspect
this will also fix some other problems with the combiner.
I think the x86 changes are really minor and uninteresting, but the
avx512 change at least is hiding a "regression" (despite the test case
being just noise, not testing some performance invariant) that might be
looked into. Not sure if any of the others impact specific "important"
code paths, but they didn't look terribly interesting to me, or the
changes were really minor. The consensus in review is to fix any
regressions that show up after the fact here.
Thanks to the other reviewers for checking the output on other
architectures. There is a specific regression on ARM that Tim already
has a fix prepped to commit.
Differential Revision: http://reviews.llvm.org/D4616
llvm-svn: 213727
Darwin prologues save their GPRs in two stages: a narrow push of r0-r7 & lr,
followed by a wide push of the remaining registers if there are any. AAPCS uses
a single push.w instruction.
It turns out that, on average, enough registers get pushed that code is smaller
in the AAPCS prologue, which is a nice property for M-class programmers. They
also have other options available for back-traces, so can hopefully deal with
the fact that FP & LR aren't adjacent in memory.
rdar://problem/15909583
llvm-svn: 209895
Sicne MBB->computeRegisterLivenes() returns Dead for sub regs like s0,
d0 is used in vpop instead of updating sp, which causes s0 dead before
its use.
This patch checks the liveness of each subreg to make sure the reg is
actually dead.
llvm-svn: 204411
The changes caused by folding an sp-adjustment into a "pop" previously
disrupted the forward search for the final real instruction in a
terminating block. This switches to a backward search (skipping debug
instrs).
This fixes PR18399.
Patch by Zhaoshi.
llvm-svn: 199266
The ARM backend has been using most of the MachO related subtarget
checks almost interchangeably, and since the only target it's had to
run on has been IOS (which is all three of MachO, Darwin and IOS) it's
worked out OK so far.
But we'd like to support embedded targets under the "*-*-none-macho"
triple, which means everything starts falling apart and inconsistent
behaviours emerge.
This patch should pick a reasonably sensible set of behaviours for the
new triple (and any others that come along, with luck). Some choices
were debatable (notably FP == r7 or r11), but we can revisit those
later when deficiencies become apparent.
llvm-svn: 198617
When trying to eliminate an "sub sp, sp, #N" instruction by folding
it into an existing push/pop using dummy registers, we need to account
for the fact that this might affect precisely how "fp" gets set in the
prologue.
We were attempting this, but assuming that *whenever* we performed a
fold it would make a difference. This is false, for example, in:
push {r4, r7, lr}
add fp, sp, #4
vpush {d8}
sub sp, sp, #8
we can fold the "sub" into the "vpush", forming "vpush {d7, d8}".
However, in that case the "add fp" instruction mustn't change, which
we were getting wrong before.
Should fix PR18160.
llvm-svn: 196725
We were trying to fold the stack adjustment into the wrong instruction in the
situation where the entire basic-block was epilogue code. Really, it can only
ever be valid to do the folding precisely where the "add sp, ..." would be
placed so there's no need for a separate iterator to track that.
Should fix PR18136.
llvm-svn: 196493
Previously, we clobbered callee-saved registers when folding an "add
sp, #N" into a "pop {rD, ...}" instruction. This change checks whether
a register we're going to add to the "pop" could actually be live
outside the function before doing so and should fix the issue.
This should fix PR18081.
llvm-svn: 196046
ARM prologues usually look like:
push {r7, lr}
sub sp, sp, #4
If code size is extremely important, this can be optimised to the single
instruction:
push {r6, r7, lr}
where we don't actually care about the contents of r6, but pushing it subtracts
4 from sp as a side effect.
This should implement such a conversion, predicated on the "minsize" function
attribute (-Oz) since I've yet to find any code it actually makes faster.
llvm-svn: 194264