This allows syntax like:
$ llvm-ar -c -r -u file.a file.o
This is in addition to the other formats that are already supported:
$ llvm-ar cru file.a file.o
$ llvm-ar -cru file.a file.o
Patch by Tom Anderson!
Differential Revision: https://reviews.llvm.org/D44452
llvm-svn: 328716
This is required in order to enable relocs to be validated
as they are read in.
Also update tests with new section ordering.
Differential Revision: https://reviews.llvm.org/D43940
llvm-svn: 326694
Neither the linker nor the runtime need this information
anymore. We were originally using this to model BSS size
but the plan is now to use the segment metadata to allow
for BSS segments.
Differential Revision: https://reviews.llvm.org/D41366
llvm-svn: 326267
This is combination of two patches by Nicholas Wilson:
1. https://reviews.llvm.org/D41954
2. https://reviews.llvm.org/D42495
Along with a few local modifications:
- One change I made was to add the UNDEFINED bit to the binary format
to avoid the extra byte used when writing data symbols. Although this
bit is redundant for other symbols types (i.e. undefined can be
implied if a function or global is a wasm import)
- I prefer to be explicit and consistent and not have derived flags.
- Some field renaming.
- Some reverting of unrelated minor changes.
- No test output differences.
Differential Revision: https://reviews.llvm.org/D43147
llvm-svn: 325860
The ELF specification says that all ELF data structures are aligned to
their natural alignments both in memory and file. That means when we
access mmap'ed ELF files, we could assume that all data structures are
aligned properly.
However, in reality, we assume that the data structures are aligned only
to two bytes because .a files only guarantee that their member files are
aligned to two bytes in archive files. So the data access is already
unaligned.
This patch relaxes the alignment requirement even more, so that we
accept unaligned access to all ELF data structures.
This patch in particular makes lld bug-compatible with icc. Intel C
compiler doesn't seem to care about data alignment and generates unaligned
relocation sections (https://bugs.llvm.org/show_bug.cgi?id=35854).
I also saw another instance of compatibility issues with our internal tool
which creates unaligned section headers.
Because GNU linkers are not picky about alignment, looks like it is
not uncommon that ELF-generating tools create unaligned files.
There is a performance penalty with this patch on host machines on which
unaligned access is expensive. x86 and AArch64 are fine. ARMv6 is a
problem, but I don't think using ARMv6 machines as hosts is common, so I
believe it's not a real problem.
Differential Revision: https://reviews.llvm.org/D41978
llvm-svn: 322407
Even with the sparse file optimizations the SYM64 test can still be painfully
slow. This unnecessarily slows down devs. It's critical that we test that the
switch to the SYM64 format occurs at 4GB but there isn't any better of a way to
fake the size of the file than sparse files. This change introduces a flag that
allows the cutoff to be arbitrarily set to whatever power of two is desired.
The flag is hidden as it really isn't meant to be used outside this one test.
This is unfortunate but appears necessary, at least until the average hard
drive is much faster.
The changes to the test require some explanation. Prior to this change we knew
that the SYM64 format was being used because the file was simply too large to
have validly handled this case if the SYM64 format were not used. To ensure
that the SYM64 format is still being used I am grepping the file for "SYM64".
Without changing the filename however this would be pointless because "SYM64"
would occur in the file either way. So the filename of the test is also changed
in order to avoid this issue.
Differential Revision: https://reviews.llvm.org/D40632
llvm-svn: 319507
While the ArrayRef can technically have unaligned data, it would be
extremely surprising if iterating over it caused undefined behavior
when a reference to the underlying type was bound.
llvm-svn: 319392
Tests were failing because some bots were running out of address
space and memory. Additionally the test was very slow. These issues
were solved by changing the test to take advantage of sparse filse and
restricting the test to run only on 64-bit systems.
This should fix https://bugs.llvm.org//show_bug.cgi?id=34189
This change makes it so that if writing a K_GNU style archive, you need
to output a > 32-bit offset it should output in K_GNU64 style instead.
Differential Revision: https://reviews.llvm.org/D36812
llvm-svn: 317352
static __global int Var = 0;
__global int* Ptr[] = {&Var};
...
In this case Var is a non premptable symbol and so its address can be used as the value of Ptr, with a base relative relocation that will add the delta between the ELF address and the actual load address. Such relocations do not require a symbol.
Differential Revision: https://reviews.llvm.org/D38909
llvm-svn: 315935
Ensure the program_headers call will fail correctly if the program
headers are larger than the underlying buffer.
Patch by Parker Thompson!
llvm-svn: 315012
As discussed on llvm-dev in
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117301.html
this changes the command line interface of llvm-dwarfdump to match the
one used by the dwarfdump utility shipping on macOS. In addition to
being shorter to type this format also has the advantage of allowing
more than one section to be specified at the same time.
In a nutshell, with this change
$ llvm-dwarfdump --debug-dump=info
$ llvm-dwarfdump --debug-dump=apple-objc
becomes
$ dwarfdump --debug-info --apple-objc
Differential Revision: https://reviews.llvm.org/D37714
llvm-svn: 312970
Without this we would have multiple relocations pointing to symbols
with the same name: the empty string. There was no way for yaml2obj to
be able to handle that.
A more general solution would be to unique symbol names in a similar
way to how we unique section names. In practice I think this covers
all common cases and is a bit more user friendly than using names like
sym1, sym2, sym3, etc.
llvm-svn: 312603
Without this patch passing a .o file with multiple sections with the
same name to obj2yaml produces a yaml file that yaml2obj cannot
handle. This is pr34162.
The problem is that when specifying, for example, the section of a
symbol, we get only
Section: foo
and don't know which of the sections whose name is foo we have to use.
One alternative would be to use section numbers. This would work, but
the output from obj2yaml would be very inconvenient to edit as
deleting a section would invalidate all indexes.
Another alternative would be to invent a unique section id that would
exist only on yaml. This would work, but seems a bit heavy handed. We
could make the id optional and default it to the section name.
Since in the last alternative the id is basically what this patch uses
as a name, it can be implemented as a followup patch if needed.
llvm-svn: 312585
The %T lit expansion expands to a common directory shared between all the tests in the same directory, which is unexpected and unintuitive, and more importantly, it's been a source of subtle race conditions and flaky tests. In https://reviews.llvm.org/D35396, it was agreed that it would be best to simply ban %T and only keep %t, which is unique to each test. When a test needs a temporary directory, it can just create one using mkdir %t.
This patch removes %T in llvm.
Differential Revision: https://reviews.llvm.org/D36495
llvm-svn: 310953
Summary:
ELF linkers generate __start_<secname> and __stop_<secname> symbols
when there is a value in a section <secname> where the name is a valid
C identifier. If dead stripping determines that the values declared
in section <secname> are dead, and we then internalize (and delete)
such a symbol, programs that reference the corresponding start and end
section symbols will get undefined reference linking errors.
To fix this, add the section name to the IRSymtab entry when a symbol is
defined in a specific section. Then use this in the gold-plugin to mark
the symbol as external and visible from outside the summary when the
section name is a valid C identifier.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D35639
llvm-svn: 309009
Nothing special here, output format is similar to the format
used by binutils readelf and ELF Tool Chain readelf.
Differential revision: https://reviews.llvm.org/D35351
llvm-svn: 308033
For each checked-in wasm file, make sure the there is
corresponding .ll file that can be used to regenerate it
if needed.
Add test/Object/Inputs/trivial-object-test.wasm to match other
formats and add some new wasm tests in test/Object.
Differential Revision: https://reviews.llvm.org/D35213
llvm-svn: 307585
That may be useful if we want to produce or parse object containing
broken relocation values using yaml2obj/obj2yaml.
Previously that was impossible because only enum values were parsed
correctly, this patch allows to put any numeric value as a
relocation type.
Differential revision: https://reviews.llvm.org/D34758
llvm-svn: 306814
Previously only the error codes were reported which
meant that useful information about malformed inputs
was not shown.
Differential Revision: https://reviews.llvm.org/D34008
llvm-svn: 305609
This ensures that we can emit the ObjC Image Info structure on COFF and
ELF as well. The frontend already would attempt to emit this
information but would get dropped when generating assembly or an object
file.
llvm-svn: 304736
Summary:
All GlobalIndirectSymbol types (not just GlobalAlias) should return
their base object.
Without this patch LTO would warn "Unable to determine comdat of
alias!" for an ifunc.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D33202
llvm-svn: 303096
Running `llvm-readobj -coff-directives msvcrt.lib` resulted in this error:
Invalid data was encountered while parsing the file
This happened because some of the object files in the archive have empty
`.drectve` sections. These empty sections result in a `parse_failed` error being
returned from `COFFObjectFile::getSectionContents()`, which in turn caused
`llvm-readobj` to stop. With this change, `getSectionContents` now returns
success, and like before the resulting array is empty.
Patch by Dave Lee.
Differential Revision: https://reviews.llvm.org/D32652
llvm-svn: 303014
The previous code was discarding the error message from
createBinary() by calling errorToErrorCode().
This meant that such error were always reported unhelpfully
as "Invalid data was encountered while parsing the file".
Other tools such as llvm-objdump already produce a more
the error message in this case.
Differential Revision: https://reviews.llvm.org/D32985
llvm-svn: 302664
The check for valid start function was inverted. Added a new
test in test/Object to check this case and fixed the existing
tests in for ObjectYAML.
Differential Revision: https://reviews.llvm.org/D32986
llvm-svn: 302560
Dont emit Mapping symbols for sections that contain only data.
Summary:
Dont emit mapping symbols for sections that contain only data.
Reviewers: rengolin, weimingz, kparzysz, t.p.northover, peter.smith
Reviewed By: t.p.northover
Patched by Shankar Easwaran <shankare@codeaurora.org>
Subscribers: alekseyshl, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D30724
llvm-svn: 299392
On Solaris ld (and some other tools that use the underlying utility
libraries, such as elfdump) chokes on an archive library that has no
symbol table. The Solaris tools always create one, even if it's empty.
That bug has been fixed in the latest development line, and can
probably be backported to a supported release, but it would be nice if
LLVM's archiver could emit the empty symbol table, too.
Patch by Danek Duvall!
llvm-svn: 297773
For whatever reason ld64 requires that member headers (not the member
themselves) should be aligned. The only way to do that is to edit the
previous member so that it ends at an aligned boundary.
Since modifying data put in an archive is an undesirable property,
llvm-ar should only do it when it is absolutely necessary.
llvm-svn: 295765
ld64 requires its archive members to be 8-byte aligned for 64-bit
content and 4-byte aligned for 32-bit content. Opt for the larger
alignment requirement. This ensures that ld64 can consume archives
generated by llvm-ar.
Thanks to Kevin Enderby for the hint about the ld64/cctools behaviours!
Resolves PR28361!
llvm-svn: 294615
it was printing the field name fileoff instead of filesize. The original check
was added in r278557.
This was found in tracking down the problem that lead to the fix in
r293842 - [dsymutil] Fix __LINKEDIT vmsize in dsymutil upgrade path
rdar://30386075
llvm-svn: 294354
To better match the old darwin otool(1) behavior, when llvm-obdump(1) is used
with the -macho option and the input file is not an object file simply print
the file name and this message:
foo: is not an object file
and continue on to process other input files. Also in this case don’t exit
non-zero. This should help in some OSS projects' with autoconf scripts
that are expecting the old darwin otool(1) behavior.
rdar://26828015
llvm-svn: 293547
R_X86_64_NONE can be emitted without a symbol associated (well,
in theory it should never be emitted in an ABI-compliant relocatable
object). So, if there's no symbol associated to a reloc, emit one
with an empty name, instead of crashing.
Ack'ed by Michael Spencer offline.
PR: 31768
llvm-svn: 293224
It describes a region of arbitrary data included in a Mach-O file.
Its initial use is to record extra data in MH_CORE files.
rdar://30001545
rdar://30001731
llvm-svn: 292500
These are OpenBSD specific program headers.
OpenBSD commit:
d39116912b
It is required for fixing PR31288.
Differential revision: https://reviews.llvm.org/D27456
llvm-svn: 288831
Summary:
When using thin archives, and processing the same archive multiple times, we were mangling existing entries. The root cause is that we were calling computeRelativePath() more than once. Here, we only call it when adding new members to an archive.
Note that D27218 changes the way thin archives are printed, and will break the new unit test included here. Depending on which one lands first, the other will need to be slightly modified.
Reviewers: rafael, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27217
llvm-svn: 288280
Add the checking for both the MachO::fat_header and the
MachO::fat_arch struct values in the constructor for
MachOUniversalBinary. Such that when the constructor
for ObjectForArch is called it can assume the values in
the MachO::fat_arch for the offset and size are contained
in the file after the MachOUniversalBinary constructor
is called for the Parent.
llvm-svn: 288084
Undefined and weak symbols don't have a meaningful size or value.
As such, nothing should be printed for those attributes (this is
already done for the address with 'U') with the BSD format. This
matches what GNU nm does.
Note that for the POSIX.2 format [1] zero values are still
printed for the size and value. This seems in spirit with
the format strings in that specification, but is debatable.
[1] http://pubs.opengroup.org/onlinepubs/9699919799/
Differential Revision: https://reviews.llvm.org/D26936
llvm-svn: 287802
This has two advantages:
1) We slowly move away from ErrorOr to the new handling interface,
in the hope of having an uniform error handling in LLVM, eventually.
2) We're starting to have *meaningful* error messages for invalid
object ELF files, rather than a generic "parse error". At some point
we should include also the offset to improve the quality of the
diagnostic.
llvm-svn: 287081
the offsets and sizes of an element of the Mach-O file overlaps with
another element in the Mach-O file.
Some other tests for malformed Mach-O files now run into these
checks so their tests were also adjusted.
llvm-svn: 285860