likely be implicitly truncated:
* All forms of Bitwise-and, bitwise-or, and integer multiplication.
* The assignment form of integer addition, subtraction, and exclusive-or
* The RHS of the comma operator
* The LHS of left shifts.
llvm-svn: 178273
The TypeLoc hierarchy used the llvm::cast machinery to perform undefined
behavior by casting pointers/references to TypeLoc objects to derived types
and then using the derived copy constructors (or even returning pointers to
derived types that actually point to the original TypeLoc object).
Some context is in this thread:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-December/056804.html
Though it's spread over a few months which can be hard to read in the mail
archive.
llvm-svn: 175462
argument to be memset, check for its type to be complete
before calling Context.getTypeSize(PointeeTy) to prevent
crash. // rdar://13081751.
llvm-svn: 173872
unsequenced operations in the RHS. We don't compare the RHS with the rest of
the expression yet; such checks will need care to avoid diagnosing unsequenced
operations which are both in conditionally-evaluated subexpressions which
actually can't occur together, such as in '(b && ++x) + (!b && ++x)'.
llvm-svn: 172760
expressions which have undefined behavior due to multiple unsequenced
modifications or an unsequenced modification and use of a variable.
llvm-svn: 172690
Along the way, fix a bug in CheckLiteralKind(), previously in diagnoseObjCLiteralComparison, where we didn't ignore parentheses
in boxed expressions for purpose of classification.
In other words, both @42 and @(42) should be classified as numeric
literals.
llvm-svn: 170931
This is just a minor bit of refactoring, but it is nice cleanup for
the subsequent patch that adds warning support for assigning literals
to weak variables.
llvm-svn: 170863
For most cases where a conversion specifier doesn't match an argument,
we usually guess that the conversion specifier is wrong. However, if
the argument is an integer type and the specifier is %C, it's likely
the user really did mean to print the integer as a character.
(This is more common than %c because there is no way to specify a unichar
literal -- you have to write an integer literal, such as '0x2603',
and then cast it to unichar.)
This does not change the behavior of %S, since there are fewer cases
where printing a literal Unicode *string* is necessary, but this could
easily be changed in the future.
<rdar://problem/11982013>
llvm-svn: 169400
The type of a character literal is 'int' in C, but if the user writes a
character /as/ a literal, we should assume they meant it to be a
character and not a numeric value, and thus offer %c as a correction
rather than %d.
There's a special case for multi-character literals (like 'MooV'), which
have implementation-defined value and usually cannot be printed with %c.
These still use %d as the suggestion.
In C++, the type of a character literal is 'char', and so this problem
doesn't exist.
<rdar://problem/12282316>
llvm-svn: 169398
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
width of an enum with negative values in IntRange. Include a test for
-Wtautological-constant-out-of-range-compare where this had manifested.
llvm-svn: 168126
type conversion between integers. This allows the warning to be more accurate.
Also, turned the warning off in an analyzer test. The relavent test cases
are covered by the tests in Sema.
llvm-svn: 167992