Commit Graph

126 Commits

Author SHA1 Message Date
Douglas Gregor 3baad0d4f7 Rename CodeModificationHint to FixItHint, since we've been using the
term "fix-it" everywhere and even *I* get tired of long names
sometimes. No functionality change.

llvm-svn: 100008
2010-03-31 15:31:50 +00:00
John McCall e78aac41de Create a new InjectedClassNameType to represent bare-word references to the
injected class name of a class template or class template partial specialization.
This is a non-canonical type;  the canonical type is still a template 
specialization type.  This becomes the TypeForDecl of the pattern declaration,
which cleans up some amount of code (and complicates some other parts, but
whatever).

Fixes PR6326 and probably a few others, primarily by re-establishing a few
invariants about TypeLoc sizes.     

llvm-svn: 98134
2010-03-10 03:28:59 +00:00
Douglas Gregor cd3f49fc88 Restore the invariant that a nested-name-specifier can only contain
class types, dependent types, and namespaces. I had previously
weakened this invariant while working on parsing pseudo-destructor
expressions, but recent work in that area has made these changes
unnecessary.

llvm-svn: 97112
2010-02-25 04:46:04 +00:00
Douglas Gregor 0d5b0a1e5e ActOnPseudoDestructorExpr now performs all semantic analysis for
pseudo-destructor expressions, and builds the CXXPseudoDestructorExpr
node directly. Currently, this only affects pseudo-destructor
expressions when they are parsed, but not after template
instantiation. That's coming next...

Improve parsing of pseudo-destructor-names. When parsing the
nested-name-specifier and we hit the sequence of tokens X :: ~, query
the actual module to determine whether X is a type-name (in which case
the X :: is part of the pseudo-destructor-name but not the
nested-name-specifier) or not (in which case the X :: is part of the
nested-name-specifier). 

llvm-svn: 97058
2010-02-24 21:29:12 +00:00
Douglas Gregor 90d554ecb3 Implement support for parsing pseudo-destructor expression with a nested-name-specifier, e.g.,
typedef int Int;
  int *p;
  p->Int::~Int();

This weakens the invariant that the only types in nested-name-specifiers are tag types (restricted to class types in C++98/03). However, we weaken this invariant as little as possible, accepting arbitrary types in nested-name-specifiers only when we're in a member access expression that looks like a pseudo-destructor expression.

llvm-svn: 96743
2010-02-21 18:36:56 +00:00
Douglas Gregor 8a6d15d5ed When determining whether a scope specifier is complete, consider a
dependent DeclContext to be "complete". Fixes PR6236.

llvm-svn: 95359
2010-02-05 04:39:02 +00:00
Douglas Gregor 9abe2377e7 Teach Sema::ActOnDependentTemplateName that a dependent template name
in a member access expression referring into the current instantiation
need not be resolved at template definition *if* the current
instantiation has any dependent base classes. Fixes PR6081.

llvm-svn: 93877
2010-01-19 16:01:07 +00:00
Douglas Gregor 27b174f4c3 When determining whether the type is the current instantiation, strip
qualifiers. Fixes PR6021.

llvm-svn: 93513
2010-01-15 16:05:33 +00:00
Douglas Gregor d2e6a45722 When qualified lookup into the current instantiation fails (because it
finds nothing), and the current instantiation has dependent base
classes, treat the qualified lookup as if it referred to an unknown
specialization. Fixes PR6031.

llvm-svn: 93433
2010-01-14 17:47:39 +00:00
Douglas Gregor 6da83624e4 Whenever we emit a typo-correction diagnostic, also emit a note
pointing to the declaration that we found that has that name (if it is
unique).

llvm-svn: 92877
2010-01-07 00:17:44 +00:00
Douglas Gregor 532e68f1f3 Typo correction for identifiers within nested name specifiers, e.g.,
typo.cpp:18:1: error: use of undeclared identifier 'other_std'; did
      you mean 'otherstd'?
other_std::strng str1;
^~~~~~~~~
otherstd

llvm-svn: 92350
2009-12-31 08:26:35 +00:00
Douglas Gregor ad183ac3c7 Fix typo in comment
llvm-svn: 92307
2009-12-30 16:01:52 +00:00
John McCall 6df5fef637 Refactor to remove more dependencies on PreDeclaratorDC. I seem to have made
the redeclaration problems in the [temp.explicit]p3 testcase worse, but I can
live with that;  they'll need to be fixed more holistically anyhow.

llvm-svn: 91771
2009-12-19 10:49:29 +00:00
John McCall 2b058ef245 Don't enter a new scope for a namespace-qualified declarator unless we're
in a file context.  In well-formed code, only happens with friend functions.
Fixes PR 5760.

llvm-svn: 91146
2009-12-11 20:04:54 +00:00
Chris Lattner 1c4280328d reapply my patch for PR4451, which improves diagnostics for :: vs : confusion.
This time with a fix to bail out when in a dependent context.

llvm-svn: 90730
2009-12-07 01:36:53 +00:00
Chris Lattner ed085234dc revert my previous patch, it is breaking something and I don't have time
to fix it ATM.

llvm-svn: 90717
2009-12-06 20:58:07 +00:00
Chris Lattner 71d5bf1c5d implement PR4451, improving error recovery for a mistaken : where a :: was
intended.  On the first testcase in the bug, we now produce:

cxx-decl.cpp:12:2: error: unexpected ':' in nested name specifier
y:a a2;
 ^
 ::

instead of:

t.cc:8:1: error: C++ requires a type specifier for all declarations
x:a a2;
^
t.cc:8:2: error: invalid token after top level declarator
x:a a2;
 ^
 ;
t.cc:9:11: error: use of undeclared identifier 'a2'
x::a a3 = a2;
          ^

llvm-svn: 90713
2009-12-06 19:08:11 +00:00
John McCall 67c0087074 Rip out the last remaining implicit use of OverloadedFunctionDecl in Sema:
LookupResult::getAsSingleDecl() is no more.  Shift Sema::LookupSingleName to
return null on overloaded results.

llvm-svn: 90309
2009-12-02 08:25:40 +00:00
John McCall 5cebab12d5 Split LookupResult into its own header.
llvm-svn: 89199
2009-11-18 07:57:50 +00:00
John McCall 27b18f8144 Carry lookup configuration throughout lookup on the LookupResult. Give
LookupResult RAII powers to diagnose ambiguity in the results.  Other diagnostics
(e.g. access control and deprecation) will be moved to automatically trigger
during lookup as part of this same mechanism.

This abstraction makes it much easier to encapsulate aliasing declarations
(e.g. using declarations) inside the lookup system:  eventually, lookup will
just produce the aliases in the LookupResult, and the standard access methods
will naturally strip the aliases off.

llvm-svn: 89027
2009-11-17 02:14:36 +00:00
Douglas Gregor 41127188ac When starting a C++ member access expression, make sure to compute the
type of the object even when it is dependent. Specifically, this makes
sure that we get the right type for "this->", which is important when
performing name lookup into this scope to determine whether an
identifier or operator-function-id is a template name.

llvm-svn: 86060
2009-11-04 22:49:18 +00:00
Douglas Gregor e40876a50c Unify our diagnostic printing for errors of the form, "we didn't like
what we found when we looked into <blah>", where <blah> is a
DeclContext*. We can now format DeclContext*'s in nice ways, e.g.,
"namespace N", "the global namespace", "'class Foo'".

This is part of PR3990, but we're not quite there yet.

llvm-svn: 84028
2009-10-13 21:16:44 +00:00
John McCall 9f3059a192 Refactor the LookupResult API to simplify most common operations. Require users to
pass a LookupResult reference to lookup routines.  Call out uses which assume a single
result.

llvm-svn: 83674
2009-10-09 21:13:30 +00:00
Douglas Gregor 5013a7e42d When entering the scope of a declarator, make sure that the scope is
complete (or, possibly causing template instantiation).

Test this via some explicit specializations of member functions.

llvm-svn: 82732
2009-09-24 23:39:01 +00:00
Douglas Gregor f45b0cf389 Implement code completion for tags, e.g., code completion after "enum"
will provide the names of various enumerations currently
visible. Introduced filtering of code-completion results when we build
the result set, so that we can identify just the kinds of declarations
we want.

This implementation is incomplete for C++, since we don't consider
that the token after the tag keyword could start a
nested-name-specifier. 

llvm-svn: 82222
2009-09-18 15:37:17 +00:00
Mike Stump 11289f4280 Remove tabs, and whitespace cleanups.
llvm-svn: 81346
2009-09-09 15:08:12 +00:00
Douglas Gregor 2b6ca46c6b Improve template instantiation for member access expressions that
involve qualified names, e.g., x->Base::f. We now maintain enough
information in the AST to compare the results of the name lookup of
"Base" in the scope of the postfix-expression (determined at template
definition time) and in the type of the object expression.

llvm-svn: 80953
2009-09-03 21:38:09 +00:00
Douglas Gregor 64792e021d Add a wicked little test-case that illustrates what we have to deal
with to properly support member access expressions in templates. This
test is XFAIL'd, because we get it completely wrong, but I've made the
minimal changes to the representation to at least avoid a crash.

llvm-svn: 80856
2009-09-02 23:58:38 +00:00
Douglas Gregor b7bfe79412 Rewrite of our handling of name lookup in C++ member access expressions, e.g.,
x->Base::f

We no longer try to "enter" the context of the type that "x" points
to. Instead, we drag that object type through the parser and pass it
into the Sema routines that need to know how to perform lookup within
member access expressions.

We now implement most of the crazy name lookup rules in C++
[basic.lookup.classref] for non-templated code, including performing
lookup both in the context of the type referred to by the member
access and in the scope of the member access itself and then detecting
ambiguities when the two lookups collide (p1 and p4; p3 and p7 are
still TODO). This change also corrects our handling of name lookup
within template arguments of template-ids inside the
nested-name-specifier (p6; we used to look into the scope of the
object expression for them) and fixes PR4703.

I have disabled some tests that involve member access expressions
where the object expression has dependent type, because we don't yet
have the ability to describe dependent nested-name-specifiers starting
with an identifier.

llvm-svn: 80843
2009-09-02 22:59:36 +00:00
Anders Carlsson b533df02b5 More missing member goodness.
llvm-svn: 80491
2009-08-30 07:09:50 +00:00
Anders Carlsson 896c230a19 Improve diagnostics for missing members. This renames the err_typecheck_no_member to err_typecheck_no_member_deprecated. The idea is that err_typecheck_no_member_deprecated should be phased out and any call sites that reference it should call DiagnoseMissingMember instead.
llvm-svn: 80469
2009-08-30 00:54:35 +00:00
Anders Carlsson d624e16833 Bye-bye old RequireCompleteType.
llvm-svn: 80182
2009-08-26 23:45:07 +00:00
Douglas Gregor 053f691d5e Improve diagnostics and recovery when the nested-name-specifier of a
qualified name does not actually refer into a class/class
template/class template partial specialization. 

Improve printing of nested-name-specifiers to eliminate redudant
qualifiers. Also, make it possible to output a nested-name-specifier
through a DiagnosticBuilder, although there are relatively few places
that will use this leeway.

llvm-svn: 80056
2009-08-26 00:04:55 +00:00
Douglas Gregor e861bac059 Improve support for out-of-line definitions of nested templates and
their members, including member class template, member function
templates, and member classes and functions of member templates.

To actually parse the nested-name-specifiers that qualify the name of
an out-of-line definition of a member template, e.g.,

  template<typename X> template<typename Y>
  X Outer<X>::Inner1<Y>::foo(Y) {
    return X();
  }

we need to look for the template names (e.g., "Inner1") as a member of
the current instantiation (Outer<X>), even before we have entered the
scope of the current instantiation. Since we can't do this in general
(i.e., we should not be looking into all dependent
nested-name-specifiers as if they were the current instantiation), we
rely on the parser to tell us when it is parsing a declaration
specifier sequence, and, therefore, when we should consider the
current scope specifier to be a current instantiation.

Printing of complicated, dependent nested-name-specifiers may be
somewhat broken by this commit; I'll add tests for this issue and fix
the problem (if it still exists) in a subsequent commit.

llvm-svn: 80044
2009-08-25 22:51:20 +00:00
Argyrios Kyrtzidis c7148c974d Use Sema's LocInfoType to pass and preserve type source info through the Parser.
llvm-svn: 79395
2009-08-19 01:28:28 +00:00
Nate Begeman 5ec4b318e3 Take 2 on AltiVec-style vector initializers.
Fixes PR4704 problems

Addresses Eli's patch feedback re: ugly cast code

Updates all postfix operators to remove ParenListExprs.  While this is awful,
no better solution (say, in the parser) is obvious to me.  Better solutions
welcome.

llvm-svn: 78621
2009-08-10 23:49:36 +00:00
Douglas Gregor d806156d54 Support nested-name-specifiers for C++ member access expressions, e.g.,
this->Base::foo

from James Porter!

llvm-svn: 78278
2009-08-06 03:17:00 +00:00
Douglas Gregor b9a955dc1d Remove a redundant getCanonicalType call
llvm-svn: 77702
2009-07-31 18:32:42 +00:00
Douglas Gregor 833834fcab What luck! Clang obtains support for refering to members of the
current instantiation when that current instantiation is a class
template partial specialization.

llvm-svn: 77609
2009-07-30 17:50:56 +00:00
Douglas Gregor 1530138fd0 Support out-of-line definitions of the members of class template
partial specializations.

llvm-svn: 77606
2009-07-30 17:40:51 +00:00
Ted Kremenek c23c7e6a51 Change uses of:
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
  Type::getAsRecordType() -> Type::getAs<RecordType>()
  Type::getAsPointerType() -> Type::getAs<PointerType>()
  Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
  Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
  Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
  Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
  Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
  Type::getAsTagType() -> Type::getAs<TagType>()
  
And remove Type::getAsReferenceType(), etc.

This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.

llvm-svn: 77510
2009-07-29 21:53:49 +00:00
Douglas Gregor e93e46c690 Implement support for out-of-line definitions of the class members of class
templates, e.g.,

  template<typename T>
  struct Outer {
    struct Inner;
  };

  template<typename T>
  struct Outer<T>::Inner {
    // ...
  };

Implementing this feature required some extensions to ActOnTag, which
now takes a set of template parameter lists, and is the precursor to
removing the ActOnClassTemplate function from the parser Action
interface. The reason for this approach is simple: the parser cannot
tell the difference between a class template definition and the
definition of a member of a class template; both have template
parameter lists, and semantic analysis determines what that template
parameter list means.

There is still some cleanup to do with ActOnTag and
ActOnClassTemplate. This commit provides the basic functionality we
need, however.

llvm-svn: 76820
2009-07-22 23:48:44 +00:00
Douglas Gregor 168190d822 Complain if we're entering the context of a dependent nested-name-specifier but
cannot match that nested-name-specifier to a class template or class template
partial specialization.

llvm-svn: 76704
2009-07-22 00:28:09 +00:00
Douglas Gregor d8d297c0ac Basic parsing and semantic analysis for out-of-line definitions of the
member functions of class templates, e.g.,

  template<typename T> 
  struct X {
    void f(T);
  };

  template<typename T> X<T>::f(T) { /* ... */ }

llvm-svn: 76692
2009-07-21 23:53:31 +00:00
Douglas Gregor ddbf4e0c2c Make Sema::ActOnCXXEnterDeclaratorScope robust against failures to compute
the declaration context, as occurs with out-of-line class template member
definitions.

llvm-svn: 76622
2009-07-21 18:59:28 +00:00
Ted Kremenek 8a286fbdb9 Per offline discussion with Steve Naroff, add back Type::getAsXXXType() methods
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.

llvm-svn: 76193
2009-07-17 17:50:17 +00:00
Ted Kremenek b825c0ddc5 Replaced Type::getAsLValueReferenceType(), Type::getAsRValueReferenceType(), Type::getAsMemberPointerType(), Type::getAsTagType(), and Type::getAsRecordType() with their Type::getAs<XXX> equivalents.
llvm-svn: 76139
2009-07-17 01:20:38 +00:00
Argyrios Kyrtzidis 7bcce49e04 Factor out some common code into Sema::EnterDeclaratorContext/ExitDeclaratorContext.
llvm-svn: 73655
2009-06-17 23:15:40 +00:00
Douglas Gregor 2ec748cd5a Implement explicit instantiations of member classes of class templates, e.g.,
template<typename T>
  struct X {
    struct Inner;
  };

  template struct X<int>::Inner;

This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>. 

This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).

Stuart vouched for me. Blame him.

llvm-svn: 71756
2009-05-14 00:28:11 +00:00
Douglas Gregor c9f9b86732 Implement the notions of the "current instantiation" and "unknown
specialization" within a C++ template, and permit name lookup into the
current instantiation. For example, given:

  template<typename T, typename U>
  struct X {
    typedef T type;

    X* x1;  // current instantiation
    X<T, U> *x2; // current instantiation
    X<U, T> *x3; // not current instantiation
    ::X<type, U> *x4; // current instantiation
    X<typename X<type, U>::type, U>: *x5; // current instantiation
  };

llvm-svn: 71471
2009-05-11 19:58:34 +00:00
Anders Carlsson bb1e4724f1 More improvements to namespace aliases. We now support everything except aliases in using directives.
llvm-svn: 67966
2009-03-28 23:53:49 +00:00
Douglas Gregor 333489bba3 Initial implementation of parsing, semantic analysis, and template
instantiation for C++ typename-specifiers such as

  typename T::type

The parsing of typename-specifiers is relatively easy thanks to
annotation tokens. When we see the "typename", we parse the
typename-specifier and produce a typename annotation token. There are
only a few places where we need to handle this. We currently parse the
typename-specifier form that terminates in an identifier, but not the
simple-template-id form, e.g.,

  typename T::template apply<U, V>

Parsing of nested-name-specifiers has a similar problem, since at this
point we don't have any representation of a class template
specialization whose template-name is unknown.

Semantic analysis is only partially complete, with some support for
template instantiation that works for simple examples. 

llvm-svn: 67875
2009-03-27 23:10:48 +00:00
Douglas Gregor c23500ebb3 Simplify CXXScopeSpec a lot. No more weird SmallVector-like hacks here
llvm-svn: 67800
2009-03-26 23:56:24 +00:00
Douglas Gregor f21eb49a04 Revamp our representation of C++ nested-name-specifiers. We now have a
uniqued representation that should both save some memory and make it
far easier to properly build canonical types for types involving
dependent nested-name-specifiers, e.g., "typename T::Nested::type".

This approach will greatly simplify the representation of
CXXScopeSpec. That'll be next.

llvm-svn: 67799
2009-03-26 23:50:42 +00:00
Douglas Gregor 90a1a65194 Introduce a new expression type, UnresolvedDeclRefExpr, that describes
dependent qualified-ids such as

  Fibonacci<N - 1>::value

where N is a template parameter. These references are "unresolved"
because the name is dependent and, therefore, cannot be resolved to a
declaration node (as we would do for a DeclRefExpr or
QualifiedDeclRefExpr). UnresolvedDeclRefExprs instantiate to
DeclRefExprs, QualifiedDeclRefExprs, etc.

Also, be a bit more careful about keeping only a single set of
specializations for a class template, and instantiating from the
definition of that template rather than a previous declaration. In
general, we need a better solution for this for all TagDecls, because
it's too easy to accidentally look at a declaration that isn't the
definition.

We can now process a simple Fibonacci computation described as a
template metaprogram.

llvm-svn: 67308
2009-03-19 17:26:29 +00:00
Douglas Gregor 5253768ada Introduce a representation for types that we referred to via a
qualified name, e.g., 

  foo::x

so that we retain the nested-name-specifier as written in the source
code and can reproduce that qualified name when printing the types
back (e.g., in diagnostics). This is PR3493, which won't be complete
until finished the other tasks mentioned near the end of this commit.

The parser's representation of nested-name-specifiers, CXXScopeSpec,
is now a bit fatter, because it needs to contain the scopes that
precede each '::' and keep track of whether the global scoping
operator '::' was at the beginning. For example, we need to keep track
of the leading '::', 'foo', and 'bar' in
 
  ::foo::bar::x

The Action's CXXScopeTy * is no longer a DeclContext *. It's now the
opaque version of the new NestedNameSpecifier, which contains a single
component of a nested-name-specifier (either a DeclContext * or a Type
*, bitmangled). 

The new sugar type QualifiedNameType composes a sequence of
NestedNameSpecifiers with a representation of the type we're actually
referring to. At present, we only build QualifiedNameType nodes within
Sema::getTypeName. This will be extended to other type-constructing
actions (e.g., ActOnClassTemplateId).

Also on the way: QualifiedDeclRefExprs will also store a sequence of
NestedNameSpecifiers, so that we can print out the property
nested-name-specifier. I expect to also use this for handling
dependent names like Fibonacci<I - 1>::value.

llvm-svn: 67265
2009-03-19 00:18:19 +00:00
Douglas Gregor 6bfde496ee The scope representation can now be either a DeclContext pointer or a
Type pointer. This allows our nested-name-specifiers to retain more
information about the actual spelling (e.g., which typedef did the
user name, or what exact template arguments were used in the
template-id?). It will also allow us to have dependent
nested-name-specifiers that don't map to any DeclContext.

llvm-svn: 67140
2009-03-18 00:36:05 +00:00
Douglas Gregor 2689746705 Add basic, hackish support for instantiation of typedefs in a class
template. More importantly, start to sort out the issues regarding
complete types and nested-name-specifiers, especially the question of:
when do we instantiate a class template specialization that occurs to
the left of a '::' in a nested-name-specifier?

llvm-svn: 66662
2009-03-11 16:48:53 +00:00
Douglas Gregor 7f74112756 Implement parsing of nested-name-specifiers that involve template-ids, e.g.,
std::vector<int>::allocator_type

When we parse a template-id that names a type, it will become either a
template-id annotation (which is a parsed representation of a
template-id that has not yet been through semantic analysis) or a
typename annotation (where semantic analysis has resolved the
template-id to an actual type), depending on the context. We only
produce a type in contexts where we know that we only need type
information, e.g., in a type specifier. Otherwise, we create a
template-id annotation that can later be "upgraded" by transforming it
into a typename annotation when the parser needs a type. This occurs,
for example, when we've parsed "std::vector<int>" above and then see
the '::' after it. However, it means that when writing something like
this:

  template<> class Outer::Inner<int> { ... };

We have two tokens to represent Outer::Inner<int>: one token for the
nested name specifier Outer::, and one template-id annotation token
for Inner<int>, which will be passed to semantic analysis to define
the class template specialization.

Most of the churn in the template tests in this patch come from an
improvement in our error recovery from ill-formed template-ids.

llvm-svn: 65467
2009-02-25 19:37:18 +00:00
Cedric Venet 08438133da Add svn:eol-style=native to some files
Correct two files with inconsistent lines endings.

llvm-svn: 64564
2009-02-14 20:20:19 +00:00
Douglas Gregor 2ada048975 Some name-lookup-related fixes, from Piotr Rak!
- Changes Lookup*Name functions to return NamedDecls, instead of
Decls. Unfortunately my recent statement that it will simplify lot of
code, was not quite right, but it simplifies some...
- Makes MergeLookupResult SmallPtrSet instead of vector, following
Douglas suggestions.
- Adds %qN format for printing qualified names to Diagnostic.
- Avoids searching for using-directives in Scopes, which are not
DeclScope, during unqualified name lookup.

llvm-svn: 63739
2009-02-04 17:27:36 +00:00
Douglas Gregor ed8f288708 Eliminated LookupCriteria, whose creation was causing a bottleneck for
LookupName et al. Instead, use an enum and a bool to describe its
contents.

Optimized the C/Objective-C path through LookupName, eliminating any
unnecessarily C++isms. Simplify IdentifierResolver::iterator, removing
some code and arguments that are no longer used.

Eliminated LookupDeclInScope/LookupDeclInContext, moving all callers
over to LookupName, LookupQualifiedName, or LookupParsedName, as
appropriate.

All together, I'm seeing a 0.2% speedup on Cocoa.h with PTH and
-disable-free. Plus, we're down to three name-lookup routines.

llvm-svn: 63354
2009-01-30 01:04:22 +00:00
Chris Lattner 60f36223a9 move library-specific diagnostic headers into library private dirs. Reduce
redundant #includes.  Patch by Anders Johnsen!

llvm-svn: 63271
2009-01-29 05:15:15 +00:00
Chris Lattner 7368d581c1 Split the single monolithic DiagnosticKinds.def file into one
.def file for each library.  This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.

Patch by Anders Johnsen!

llvm-svn: 63111
2009-01-27 18:30:58 +00:00
Sebastian Redl 9ed6efdd75 Add support for declaring pointers to members.
Add serialization support for ReferenceType.

llvm-svn: 62934
2009-01-24 21:16:55 +00:00
Douglas Gregor 3407432644 Refactor name lookup.
This change refactors and cleans up our handling of name lookup with
LookupDecl. There are several aspects to this refactoring:

  - The criteria for name lookup is now encapsulated into the class
  LookupCriteria, which replaces the hideous set of boolean values
  that LookupDecl currently has.

  - The results of name lookup are returned in a new class
  LookupResult, which can lazily build OverloadedFunctionDecls for
  overloaded function sets (and, eventually, eliminate the need to
  allocate member for OverloadedFunctionDecls) and contains a
  placeholder for handling ambiguous name lookup (for C++).

  - The primary entry points for name lookup are now LookupName (for
    unqualified name lookup) and LookupQualifiedName (for qualified
    name lookup). There is also a convenience function
    LookupParsedName that handles qualified/unqualified name lookup
    when given a scope specifier. Together, these routines are meant
    to gradually replace the kludgy LookupDecl, but this won't happen
    until after we have base class lookup (which forces us to cope
    with ambiguities).

  - Documented the heck out of name lookup. Experimenting a little
    with using Doxygen's member groups to make some sense of the Sema
    class. Feedback welcome!

  - Fixes some lingering issues with name lookup for
  nested-name-specifiers, which now goes through
  LookupName/LookupQualifiedName. 

llvm-svn: 62245
2009-01-14 22:20:51 +00:00
Douglas Gregor 82ac25e4a7 Unify the code for defining tags in C and C++, so that we always
introduce a Scope for the body of a tag. This reduces the number of
semantic differences between C and C++ structs and unions, and will
help with other features (e.g., anonymous unions) in C. Some important
points:

  - Fields are now in the "member" namespace (IDNS_Member), to keep
    them separate from tags and ordinary names in C. See the new test
    in Sema/member-reference.c for an example of why this matters. In
    C++, ordinary and member name lookup will find members in both the
    ordinary and member namespace, so the difference between
    IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but
    only in C++!). 
  - We always introduce a Scope and push a DeclContext when we're
    defining a tag, in both C and C++. Previously, we had different
    actions and different Scope/CurContext behavior for enums, C
    structs/unions, and C++ structs/unions/classes. Now, it's one pair
    of actions. (Yay!)

There's still some fuzziness in the handling of struct/union/enum
definitions within other struct/union/enum definitions in C. We'll
need to do some more cleanup to eliminate some reliance on CurContext
before we can solve this issue for real. What we want is for something
like this:

  struct X {
    struct T { int x; } t;
  };

to introduce T into translation unit scope (placing it at the
appropriate point in the IdentifierResolver chain, too), but it should
still have struct X as its lexical declaration
context. PushOnScopeChains isn't smart enough to do that yet, though,
so there's a FIXME test in nested-redef.c

llvm-svn: 61940
2009-01-08 20:45:30 +00:00
Steve Naroff 35c62ae632 This is a large/messy diff that unifies the ObjC AST's with DeclContext.
- ObjCContainerDecl's (ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl), ObjCCategoryImpl, & ObjCImplementation are all DeclContexts.
- ObjCMethodDecl is now a ScopedDecl (so it can play nicely with DeclContext).
- ObjCContainerDecl now does iteration/lookup using DeclContext infrastructure (no more linear search:-)
- Removed ASTContext argument to DeclContext::lookup(). It wasn't being used and complicated it's use from an ObjC AST perspective.
- Added Sema::ProcessPropertyDecl() and removed Sema::diagnosePropertySetterGetterMismatch().
- Simplified Sema::ActOnAtEnd() considerably. Still more work to do.
- Fixed an incorrect casting assumption in Sema::getCurFunctionOrMethodDecl(), now that ObjCMethodDecl is a ScopedDecl.
- Removed addPropertyMethods from ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl.

This passes all the tests on my machine. Since many of the changes are central to the way ObjC finds it's methods, I expect some fallout (and there are still a handful of FIXME's). Nevertheless, this should be a step in the right direction.

llvm-svn: 61929
2009-01-08 17:28:14 +00:00
Douglas Gregor 4d87df5853 Delay parsing of default arguments of member functions until the class
is completely defined (C++ [class.mem]p2).

Reverse the order in which we process the definitions of member
functions specified inline. This way, we'll get diagnostics in the
order in which the member functions were declared in the class.

llvm-svn: 61103
2008-12-16 21:30:33 +00:00
Douglas Gregor 195002917e Partial fix for qualified name lookup, such that the lookup of N in
N::X only skips those entities specified in C++ [basic.lookup.qual]p1.

Note that both EDG and GCC currently get this wrong. EDG has confirmed
that the bug will be fixed in a future version.

llvm-svn: 61079
2008-12-16 06:37:47 +00:00
Douglas Gregor 29e174cc58 Make name lookup when we're inside a declarator's scope, such as ClassName::func, work with the new unqualified name lookup code. Test it with default arguments in out-of-line member definitions
llvm-svn: 61060
2008-12-16 00:38:16 +00:00
Douglas Gregor 7a4fad1b0b Address some comments on the name lookup/DeclContext patch from Chris
llvm-svn: 60897
2008-12-11 20:41:00 +00:00
Douglas Gregor 91f84216f7 Unifies the name-lookup mechanisms used in various parts of the AST
and separates lexical name lookup from qualified name lookup. In
particular:
  * Make DeclContext the central data structure for storing and
    looking up declarations within existing declarations, e.g., members
    of structs/unions/classes, enumerators in C++0x enums, members of
    C++ namespaces, and (later) members of Objective-C
    interfaces/implementations. DeclContext uses a lazily-constructed
    data structure optimized for fast lookup (array for small contexts,
    hash table for larger contexts). 

  * Implement C++ qualified name lookup in terms of lookup into
    DeclContext.

  * Implement C++ unqualified name lookup in terms of
    qualified+unqualified name lookup (since unqualified lookup is not
    purely lexical in C++!)

  * Limit the use of the chains of declarations stored in
    IdentifierInfo to those names declared lexically.

  * Eliminate CXXFieldDecl, collapsing its behavior into
    FieldDecl. (FieldDecl is now a ScopedDecl).

  * Make RecordDecl into a DeclContext and eliminates its
    Members/NumMembers fields (since one can just iterate through the
    DeclContext to get the fields).

llvm-svn: 60878
2008-12-11 16:49:14 +00:00
Chris Lattner 4bd8dd8568 stop calling II::getName() unnecesarily in sema
llvm-svn: 59609
2008-11-19 08:23:25 +00:00
Douglas Gregor ae2fbad373 Updated IdentifierResolver to deal with DeclarationNames. The names of
C++ constructors, destructors, and conversion functions now have a
FETokenInfo field that IdentifierResolver can access, so that these
special names are handled just like ordinary identifiers. A few other
Sema routines now use DeclarationNames instead of IdentifierInfo*'s.

To validate this design, this code also implements parsing and
semantic analysis for id-expressions that name conversion functions,
e.g.,

  return operator bool();

The new parser action ActOnConversionFunctionExpr takes the result of
parsing "operator type-id" and turning it into an expression, using
the IdentifierResolver with the DeclarationName of the conversion
function. ActOnDeclarator pushes those conversion function names into
scope so that the IdentifierResolver can find them, of course.

llvm-svn: 59462
2008-11-17 20:34:05 +00:00
Argyrios Kyrtzidis 16ac9be7f0 Implement Sema support for C++ nested-name-specifiers.
llvm-svn: 58916
2008-11-08 17:17:31 +00:00