When the operand is a plain immediate rather than a label, print it
as [pc, #imm] like we do for the Thumb2 wide encoding variant.
rdar://12154503
llvm-svn: 166991
We will make them delay slot forms if there is something that can be
placed in the delay slot during a separate pass. Mips16 extended instructions
cannot be placed in delay slots.
llvm-svn: 166990
diagnostic states; make sure the ASTReader sets the diagnostic state
properly instead of always recreating it.
Fixes rdar://12581618 & http://llvm.org/PR14181
llvm-svn: 166987
we had the -ccc-clang-cxx and -ccc-no-clang-cxx options to force them
on or off for testing.
Clang c++ support is now production quality and these options are dead.
llvm-svn: 166986
is 24 bits not 20 and the decoding needed to correctly handle converting the
J1 and J2 bits to their I1 and I2 values to reconstruct the displacement.
llvm-svn: 166982
There should be no functional changes as SBData creation functions already checked for NULL regardless of size - but it ensures consistency
llvm-svn: 166978
%0 = load <8 x i16>* %dest
%1 = shufflevector <8 x i16> %0, <8 x i16> %in,
<8 x i32> < i32 0, i32 1, i32 2, i32 3, i32 13, i32 undef, i32 14, i32 14>
store <8 x i16> %1, <8 x i16>* %dest
We get:
vmovlpd (%eax), %xmm0, %xmm0
instead of:
vmovaps (%eax), %xmm1
vmovsd %xmm1, %xmm0, %xmm0
No extra test-case is added. I just fixed the existing one
(also it uses FileCheck now).
llvm-svn: 166971
ELF ABI.
A varargs parameter consisting of a single-precision floating-point value,
or of a single-element aggregate containing a single-precision floating-point
value, must be passed in the low-order (rightmost) four bytes of the
doubleword stack slot reserved for that parameter. If there are GPR protocol
registers remaining, the parameter must also be mirrored in the low-order
four bytes of the reserved GPR.
Prior to this patch, such parameters were being passed in the high-order
four bytes of the stack slot and the mirrored GPR.
The patch adds a new test case to verify the correct code generation.
llvm-svn: 166968
This should delay initialization of Python until strictly necessary and speed-up debugger startup
Also, convert formatters for SEL and BOOL ObjC data-types from Python to C++, in order to reap more performance benefits from the above changes
llvm-svn: 166967
I tracked down a leak that could happen when detaching from a process where the lldb_private::Process objects would stay around forever. This was caused by a eStateDetached event that was queued up on the lldb_private::Process private state thread listener. Since process events contain shared pointers to the process, this is dangerous if they don't get consume or cleared as having the lldb_private::Process class contain a collection of things that have a shared pointer to yourself is obviously bad.
To fix this I modified the Process::Finalize() function to clear this list. The actual thing that was holding onto the ModuleSP and thus the static archive, was a stack frame. Since the process wasn't going away, it still had thread objects and they still had frames. I modified the Thread::Destroy() to clear the stack frames to ensure this further doesn't happen.
llvm-svn: 166964
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
llvm-svn: 166958
The problem is as follows: C++11 has contexts which are not
potentially-evaluated, and yet in which we are required or encouraged to
perform constant evaluation. In such contexts, we are not permitted to
implicitly define special member functions for literal types, therefore
we cannot evalaute those constant expressions.
Punt on this in one more context for now by skipping checking constexpr
variable initializers if they occur in dependent contexts.
llvm-svn: 166956
treating it as if it were an IEEE floating-point type with 106-bit
mantissa.
This makes compile-time arithmetic on "long double" for PowerPC
in clang (in particular parsing of floating point constants)
work, and fixes all "long double" related failures in the test
suite.
llvm-svn: 166951
Partial copies can show up even when CoalescerPair.isPartial() returns
false. For example:
%vreg24:dsub_0<def> = COPY %vreg31:dsub_0; QPR:%vreg24,%vreg31
Such a partial-partial copy is not good enough for the transformation
adjustCopiesBackFrom() needs to do.
llvm-svn: 166944
Previously, the warning would erroneously fire on this:
for (Test *a in someArray)
use(a.weakProp);
...because it looks like the same property is being accessed over and over.
However, clearly this is not the case. We now ignore loops like this for
local variables, but continue to warn if the base object is a parameter,
global variable, or instance variable, on the assumption that these are
not repeatedly usually assigned to within loops.
Additionally, do-while loops where the condition is 'false' are not really
loops at all; usually they're just used for semicolon-swallowing macros or
using "break" like "goto".
<rdar://problem/12578785&12578849>
llvm-svn: 166942
Our one basic suppression heuristic is to assume that functions do not
usually return NULL. However, when one of the arguments is NULL it is
suddenly much more likely that NULL is a valid return value. In this case,
we don't suppress the report here, but we do attach /another/ visitor to
go find out if this NULL argument also comes from an inlined function's
error path.
This new behavior, controlled by the 'avoid-suppressing-null-argument-paths'
analyzer-config option, is turned off by default. Turning it on produced
two false positives and no new true positives when running over LLVM/Clang.
This is one of the possible refinements to our suppression heuristics.
<rdar://problem/12350829>
llvm-svn: 166941
Additionally, don't collect PostStore nodes -- they are often used in
path diagnostics.
Previously, we tried to track null arguments in the same way as any other
null values, but in many cases the necessary nodes had already been
collected (a memory optimization in ExplodedGraph). Now, we fall back to
using the value of the argument at the time of the call, which may not
always match the actual contents of the region, but often will.
This is a precursor to improving our suppression heuristic.
<rdar://problem/12350829>
llvm-svn: 166940
wrapper returns a vector of integers when passed a vector of pointers) by having
getIntPtrType itself return a vector of integers in this case. Outside of this
wrapper, I didn't find anywhere in the codebase that was relying on the old
behaviour for vectors of pointers, so give this a whirl through the buildbots.
llvm-svn: 166939