Previously for cv-qualified types, we would just ignore them
and they would never get printed. Now we can enumerate them
and cache them like any other symbol type.
llvm-svn: 342414
Naively computing the hash after the PDB data has been generated is in practice
as fast as other approaches I tried. I also tried online-computing the hash as
parts of the PDB were written out (https://reviews.llvm.org/D51887; that's also
where all the measuring data is) and computing the hash in parallel
(https://reviews.llvm.org/D51957). This approach here is simplest, without
being slower.
Differential Revision: https://reviews.llvm.org/D51956
llvm-svn: 342333
Eventually we need to be able to support nested types, which don't
have an associated CVType record. To handle this, remove the
CVType from all of the record classes, and instead store the
deserialized record. Then move the deserialization up to the thing
that creates the type. This actually makes error handling better
anyway as we can return an invalid symbol instead of asserting false.
llvm-svn: 342284
r342003 added support for emitting FPO data from the
DEBUG_S_FRAMEDATA subsection of the .debug$S section to the PDB
file. However, that is not the end of the story. FPO can end
up in two different destinations in a PDB, each corresponding to
a different FPO data source.
The case handled by r342003 involves copying data from the
DEBUG_S_FRAMEDATA subsection of the .debug$S section to the
"New FPO" stream in the PDB, which is then referred to by the
DBI stream. The case handled by this patch involves copying
records from the .debug$F section of an object file to the "FPO"
stream (or perhaps more aptly, the "Old FPO" stream) in the PDB
file, which is also referred to by the DBI stream.
The formats are largely similar, and the difference is mostly
only visible in masm generated object files, such as some of the
low-level CRT object files like memcpy. MASM doesn't appear to
support writing the DEBUG_S_FRAMEDATA subsection, and instead
just writes these records to the .debug$F section.
Although clang-cl does not emit a .debug$F section ever, lld still
needs to support it so we have good debugging for CRT functions.
Differential Revision: https://reviews.llvm.org/D51958
llvm-svn: 342080
Makes the produced pdbs more deterministic; before they'd contain 2 arbitary
bytes where this padding was.
Also reorder initialization to match the order of the fields in the struct (nfc)
llvm-svn: 341945
clang-format was getting confused due to the presence of a macro
invocation that was not terminated by a semicolon. Fixed this by
terminating the macro lines with semicolons and re-ran clang-format
on the file.
llvm-svn: 341864
- Log the reason for a PDB or precompiled-OBJ load failure
- Properly handle out-of-date PDB or precompiled-OBJ signature by displaying a corresponding error
- Slightly change behavior on PDB failure: any subsequent load attempt from another OBJ would result in the same error message being logged
- Slightly change behavior on PDB failure: retry with filename only if previous error was ENOENT ("no such file or directory")
- Tests: a. for native PDB errors; b. cover all the cases above
Differential Revision: https://reviews.llvm.org/D51559
llvm-svn: 341825
They were unintentionally calling DIA directly, which requires
Windows. We need to pass the -native flag, and this then required
fixing up one or two tests.
llvm-svn: 341731
In order to start testing this, I've added a new mode to
llvm-pdbutil which is only really useful for writing tests.
It just dumps the value of raw fields in record format.
This isn't really ideal and it won't allow us to test some
important cases, but it's better than nothing for now.
llvm-svn: 341729
Part of the responsibility of the native PDB reader is to cache
symbols the first time they are accessed, so they can then be
looked up by an ID. Furthermore, we need to resolve type indices
to records that we vend to the user, and other things. Previously
this code was all thrown together a bit haphazardly in the native
session class, but it makes sense to collect all of this into a
single class whose sole responsibility is to manage the collection
of known symbols.
llvm-svn: 341608
The way DIA SDK works is that when you request a symbol, it
gets assigned an internal identifier that is unique for the
life of the session. You can then use this identifier to
get back the same symbol, with all of the same internal state
that it had before, even if you "destroyed" the original
copy of the object you had.
This didn't work properly in our native implementation, and
if you destroyed an object for a particular symbol, then
requested the same symbol again, it would get assigned a new
ID and you'd get a fresh copy of the object. In order to fix
this some refactoring had to happen to properly reuse cached
objects. Some unittests are added to verify that symbol
reuse is taking place, making use of the new unittest input
feature.
llvm-svn: 341503
Following D50807, and heading towards D50664, this intermediary change does the following:
1. Upgrade all custom Error types in llvm/trunk/lib/DebugInfo/ to use the new StringError behavior (D50807).
2. Implement std::is_error_code_enum and make_error_code() for DebugInfo error enumerations.
3. Rename GenericError -> PDBError (the file will be renamed in a subsequent commit)
4. Update custom error messages to follow the same formatting: (\w\s*)+\.
5. Keep generic "file not found" (ENOENT) errors as they are in PDB code. Previously, there used to be a custom enumeration for that purpose.
6. Remove a few extraneous LF in log() implementations. Printing LF is a responsability at a higher level, not at the error level.
Differential Revision: https://reviews.llvm.org/D51499
llvm-svn: 341228
Summary:
This prefix was added in r333421, and it changed our dumper output to
say things like "CVRegEAX" instead of just "EAX". That's a functional
change that I'd rather avoid.
I tested GCC, Clang, and MSVC, and all of them support #pragma
push_macro. They don't issue warnings whem the macro is not defined
either.
I don't have a Mac so I can't test the real termios.h header, but I
looked at the termios.h sources online and looked for other conflicts.
I saw only the CR* macros, so those are the ones we work around.
Reviewers: zturner, JDevlieghere
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50851
llvm-svn: 339907
The reference implementation uses a case-insensitive string
comparison for strings of equal length. This will cause the
string "tEo" to compare less than "VUo". However we were using
a case sensitive comparison, which would generate the opposite
outcome. Switch to a case insensitive comparison. Also, when
one of the strings contains non-ascii characters, fallback to
a straight memcmp.
The only way to really test this is with a DIA test. Before this
patch, the test will fail (but succeed if link.exe is used instead
of lld-link). After the patch, it succeeds even with lld-link.
llvm-svn: 336464
It seems like the debugger first computes a symbol's bucket,
and then does a binary search of entries in the bucket using the
symbol's name in order to find it. If the bucket entries are not
in sorted order, this obviously won't work. After this patch a
couple of simple test cases show that we generate an exactly
identical GSI hash stream, which is very nice.
llvm-svn: 336405
The code to emit the pieces of the MSF file were actually in
PDBFileBuilder. Move this to MSFBuilder so that we can
theoretically emit an MSF without having a PDB file.
llvm-svn: 335789
Part of the DBI stream is a list of variable length structures
describing each module that contributes to the final executable.
One member of this structure is a section contribution entry that
describes the first section contribution in the output file for
the given module.
We have been leaving this structure unpopulated until now, so with
this patch it is now filled out correctly.
Differential Revision: https://reviews.llvm.org/D45832
llvm-svn: 330457
The DBI stream contains a list of module descriptors. At the
beginning of each descriptor is a structure representing the first
section contribution in the output file for that module. LLD
currently doesn't fill out this structure at all, but link.exe
does. So as a precursor to emitting this data in LLD, we first
need a way to dump it so that it can be checked.
This patch adds support for the dumping, and verifies via a test
that LLD emits bogus information.
llvm-svn: 330208
Using Config->is64() will treat ARM64 as Amd64, which is incorrect.
Furthermore, there are more esoteric architectures that could
theoretically be encountered. Just set it directly to the machine
type, which we already know anyway.
llvm-svn: 330157
Most of these are pretty trivial and obvious. Setting the toolchain
version to 14.11 is perhaps a little questionable, but we've been bitten
in the past where one of our version fields sidn't match MSVC's, and I
definitely don't want to go through that diagnosis again as it was
pretty time consuming and hard to track down.
I found all of these by using llvm-pdbutil export to dump the dbi and
pdb streams to a file, then using fc followed by llvm-pdbutil explain to
explain the mismatched bytes.
There are still some more, these are just the low hanging fruit.
Differential Revision: https://reviews.llvm.org/D45276
llvm-svn: 330130
Using this, you can use llvm-pdbutil to export the contents of a
stream to a binary file, then run explain on the binary file so
that it treats the offset as an offset into the stream instead
of an offset into a file. This makes it easy to compare the
contents of the same stream from two different files.
llvm-svn: 329207
The missing definitions are from cvconst.h shipped with DIA SDK.
Correct the url to MSDN for MemoryTypeEnum and set the underlying
type of PDB_StackFrameType and PDB_MemoryType to uint16_t.
llvm-svn: 329104
This command can dump the binary contents of a stream to a file.
This is useful when you want to do side-by-side comparisons of
a specific stream from two PDBs to examine the differences between
them. You can export both of them to a file, then open them up
side by side in a hex editor (for example), so as to eliminate any
differences that might arise from the contents being on different
blocks in the PDB.
In subsequent patches I plan to improve the "explain" subcommand
so that you can explain the contents of a binary file that isn't
necessarily a full PDB, but one of these dumped streams, by telling
the subcommand how to interpret the contents.
llvm-svn: 329002
This will show more detail when using `llvm-pdbutil explain` on an
offset in the DBI or PDB streams. Specifically, it will dig into
individual header fields and substreams to give a more precise
description of what the byte represents.
llvm-svn: 328878
Before this change, using dumpProperties() with PDBSymbolData
would look like this:
get_locationType: 3
1
After this change:
get_locationType: 3
get_value: 1
llvm-svn: 328590
This was reverted several times due to what ultimately turned out
to be incompatibilities in our serialized hash table format.
Several changes went in prior to this to fix those issues since
they were more fundamental and independent of supporting injected
sources, so now that those are fixed this change should hopefully
pass.
llvm-svn: 328363
When investigating bugs in PDB generation, the first step is
often to do the same link with link.exe and then compare PDBs.
But comparing PDBs is hard because two completely different byte
sequences can both be correct, so it hampers the investigation when
you also have to spend time figuring out not just which bytes are
different, but also if the difference is meaningful.
This patch fixes a couple of cases related to string table emission,
hash table emission, and the order in which we emit strings that
makes more of our bytes the same as the bytes generated by MS PDBs.
Differential Revision: https://reviews.llvm.org/D44810
llvm-svn: 328348
NFC, this just renames some methods to better express what they
do, and also adds a few helper methods to add some symmetry to the
API in a few places (for example there was a getStringFromId but not
a getIdFromString method in the string table).
llvm-svn: 328221
To resolve symbol context at a particular address, we need to
determine the compiland for the address. We are able to determine
the parent compiland of PDBSymbolFunc, PDBSymbolTypeUDT,
PDBSymbolTypeEnum symbols indirectly through line information.
However no such information is availabile for PDBSymbolData,
i.e. variables.
The Section Contribution table from PDBs has information about
each compiland's contribution to sections by address. For example,
a piece of a contribution looks like,
VA RelativeVA Sect No. Offset Length Compiland
14000087B0 000087B0 0001 000077B0 000000BB exe_main.obj
So given an address, it's possible to determine its compiland with
this information.
llvm-svn: 328178