Allow `GenericDebugNode` construction directly from `MDString`, rather
than requiring `StringRef`s. I've refactored the `StringRef`
constructors to use these. There's no real functionality change here,
except for exposing the lower-level API.
The purpose of this is to simplify construction of string operands when
reading bitcode. It's unnecessarily indirect to parse an `MDString` ID,
lookup the `MDString` in the bitcode reader list, get the `StringRef`
out of that, and then have `GenericDebugNode::getImpl()` use
`MDString::get()` to acquire the original `MDString`. Instead, this
allows the bitcode reader to directly pass in the `MDString`.
llvm-svn: 227848
ObjectLinkingLayer.
There are a two of overloads for addObject, one of which transfers ownership of
the underlying buffer to OrcMCJITReplacement. This commit makes the ownership
transfering version pass ownership down to the ObjectLinkingLayer in order to
prevent the issue described in r227778.
I think this commit will fix the sanitizer bot failures that necessitated the
removal of the load-object-a.ll regression test in r227785, so I'm reinstating
that test.
llvm-svn: 227845
Move debug-info-centred `Metadata` subclasses into their own
header/source file. A couple of private template functions are needed
from both `Metadata.cpp` and `DebugInfoMetadata.cpp`, so I've moved them
to `lib/IR/MetadataImpl.h`.
llvm-svn: 227835
Similar to the C++14 void specializations of these templates, useful as
a stop-gap until LLVM switches to '14.
Example use-cases in tblgen because I saw some functors that looked like
they could be simplified/refactored.
Reviewers: dexonsmith
Differential Revision: http://reviews.llvm.org/D7324
llvm-svn: 227828
described by integer constants. This is a bit ugly, but if the source
language allows arbitrary type casting, the debug info must follow suit.
For example:
void foo() {
float a;
*(int *)&a = 0;
}
For the curious: SROA replaces the float alloca with an i32 alloca, which
is then optimized away and described via dbg.value(i32 0, ...).
llvm-svn: 227827
This is true for SI only. CI+ supports unaligned memory accesses,
but this requires driver support, so for now we disallow unaligned
accesses for all GCN targets.
llvm-svn: 227822
This avoids a partial false dependency on the previous content of
the upper lanes of the destination vector register.
Differential Revision: http://reviews.llvm.org/D7307
llvm-svn: 227820
Summary:
Previously it only avoided optimizing signed comparisons to 0.
Sometimes the DAGCombiner will optimize the unsigned comparisons
to 0 before it gets to the peephole pass, but sometimes it doesn't.
Fix for PR22373.
Test Plan: test/CodeGen/ARM/sub-cmp-peephole.ll
Reviewers: jfb, manmanren
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D7274
llvm-svn: 227809
The commit r225977 uncovered this bug. The problem was that the vectorizer tried to
read the second operand of an already deleted instruction.
The bug didn't show up before r225977 because the freed memory still contained a non-null pointer.
With r225977 deletion of instructions is delayed and the read operand pointer is always null.
llvm-svn: 227800
ExecutionEngine's Modules list instead.
This makes the owned modules visibile to ExecutionEngine. In particular,
it is required for ExecutionEngine::runStaticConstructorsAndDestructors to
work.
Regression tests for Orc (which test this issue) will be committed shortly.
llvm-svn: 227779
finalization time.
As currently implemented, RuntimeDyldELF requires the original object
file to be avaible when relocations are being resolved. This patch
ensures that the ObjectLinkingLayer preserves it until then. In the
future RuntimeDyldELF should be rewritten to remove this requirement, at
which point this patch can be reverted.
Regression test cases for Orc (which include coverage of this bug) will
be committed shortly.
llvm-svn: 227778
PPCInstrInfo.cpp has ended up containing several small MI-level passes, and
this is making the file harder to read than necessary. Split out
PPCEarlyReturn into its own source file. NFC.
Now that PPCInstrInfo.cpp does not also contain pass implementations, I hope
that it will be slightly less unwieldy.
llvm-svn: 227775
PPCInstrInfo.cpp has ended up containing several small MI-level passes, and
this is making the file harder to read than necessary. Split out
PPCVSXCopy into its own source file. NFC.
llvm-svn: 227771
PPCInstrInfo.cpp has ended up containing several small MI-level passes, and
this is making the file harder to read than necessary. Split out
PPCVSXFMAMutate into its own source file. NFC.
llvm-svn: 227770
This MI-level pass was necessary when VSX support was first being developed,
specifically, before the ABI code had been updated to use VSX registers for
arguments (the register assignments did not change, in a physical sense, but
the VSX super-registers are now used). Unfortunately, I never went back and
removed this pass after that was done. I believe this code is now effectively
dead.
llvm-svn: 227767
When PPCEarlyReturn, it should really copy implicit ops from the old return
instruction to the new one. This currently does not matter much, because we run
PPCEarlyReturn very late in the pipeline (there is nothing to do DCE on
definitions of those registers). However, for completeness, we should do it
anyway.
Noticed by inspection (and there should be no functional change); thus, no
test case.
llvm-svn: 227763
The VSX store instructions were also picking up an implicit "may read" from the
default pattern, which was an intrinsic (and we don't currently have a way of
specifying write-only intrinsics).
This was causing MI verification to fail for VSX spill restores.
llvm-svn: 227759
isel is actually a cracked instruction on the P7/P8, and must start a dispatch
group. The scheduling model should reflect this so that we don't bunch too many
of them together when possible.
Thanks to Bill Schmidt and Pat Haugen for helping to sort this out.
llvm-svn: 227758