the complete destructor and then invoke the global delete
operator. Previously, we would invoke the deleting destructor, which
calls the wrong delete operator. Fixes PR10341.
llvm-svn: 135021
block pointers) that don't have any qualification to be POD types. We
were previously considering them to be non-POD types, because this was
convenient in C++ for is_pod-like traits. However, we now end up
inferring lifetime in such cases (template arguments infer __strong),
so it is not necessary.
Moreover, we want rvalues of object type (which have their lifetime
stripped) to be PODs to allow, e.g., va_arg(arglist, id) to function
properly. Fixes <rdar://problem/9758798>.
llvm-svn: 134993
dependent. This covers an odd class of types such as
int (&)[sizeof(sizeof(T() + T()))];
which involve template parameters but, because of some trick typically
involving a form of expression that is never type-dependent, resolve
down to a non-dependent type. Such types need to be mangled
essentially as they were written in the source code (involving
template parameters), rather than via their canonical type.
In general, instantiation-dependent types should be mangled as
they were written in the source. However, since we can't do that now
without non-trivial refactoring of the AST (see the new FIXME), I've
gone for this partial solution: only use the as-written-in-the-source
mangling for these strange types that are instantiation-dependent but
not dependent. This provides better compatibility with previous
incarnations of Clang and with GCC. In the future, we'd like to get
this right.
Fixes <rdar://problem/9663282>.
llvm-svn: 134984
uncompleted struct types. We now do what llvm-gcc does and compile
them into [i8 x 0]. If the type is later completed, we make sure that
it is appropriately cast.
We compile the terrible example to something like this now:
%struct.A = type { i32, i32, i32 }
@g = external global [0 x i8]
define void @_Z1fv() nounwind {
entry:
call void @_Z3fooP1A(%struct.A* bitcast ([0 x i8]* @g to %struct.A*))
ret void
}
declare void @_Z3fooP1A(%struct.A*)
define %struct.A* @_Z2f2v() nounwind {
entry:
ret %struct.A* getelementptr inbounds ([0 x %struct.A]* bitcast ([0 x i8]* @g to [0 x %struct.A]*), i32 0, i64 1)
}
llvm-svn: 134972
stuff like this:
typedef struct {
int x, y, z;
} foo_t;
foo_t g;
into:
%"struct.<anonymous>" = type { i32, i32, i32 }
we now get:
%struct.foo_t = type { i32, i32, i32 }
This doesn't change the behavior of the compiler, but makes the IR much easier to read.
llvm-svn: 134969
For this sample:
@interface Foo
@property id x;
@end
we get:
t.m:2:1: error: ARC forbids properties of Objective-C objects with unspecified storage attribute
@property id x;
^
1 error generated.
The error should be imposed on the implementor of the interface, not the user. If the user uses
a header of a non-ARC library whose source code he does not have, we are basically asking him to
go change the header of the library (bad in general), possible overriding how the property is
implemented if he gets confused and says "Oh I'll just add 'copy' then" (even worse).
Second issue is that we don't emit any error for 'readonly' properties, e.g:
@interface Foo
@property (readonly) id x; // no error here
@end
@implementation Foo
@synthesize x; // no error here too
@end
We should give an error when the implementor is @synthesizing a property which doesn't have
any storage specifier; this is when the explicit specifier is important, because we are
going to create an ivar and we want its ownership to be explicit.
Related improvements:
-OBJC_PR_unsafe_unretained turned out to not fit in ObjCPropertyDecl's bitfields, fix it.
-For properties of extension classes don't drop PropertyAttributesAsWritten values.
-Have PropertyAttributesAsWritten actually only reflect what the user wrote
rdar://9756610.
llvm-svn: 134960
require destruction and there is possibility of that without
construction. Thanks Johnm for review and suggestions offline.
// rdar://9535237.
llvm-svn: 134906
When two different types has the same text representation in the same
diagnostic message, print an a.k.a. after the type if the a.k.a. gives extra
information about the type.
class versa_string;
typedef versa_string string;
namespace std {template <typename T> class vector;}
using std::vector;
void f(vector<string> v);
namespace std {
class basic_string;
typedef basic_string string;
template <typename T> class vector {};
void g() {
vector<string> v;
f(v);
}
}
Old message:
----------------
test.cc:15:3: error: no matching function for call to 'f'
f(&v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' to 'vector<string>' for 1st argument
void f(vector<string> v);
^
1 error generated.
New message:
---------------
test.cc:15:3: error: no matching function for call to 'f'
f(v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' (aka 'std::vector<std::basic_string>') to
'vector<string>' (aka 'std::vector<versa_string>') for 1st argument
void f(vector<string> v);
^
1 error generated.
llvm-svn: 134904
- an off-by-one error in emission of irregular array limits for
InitListExprs
- use an EH partial-destruction cleanup within the normal
array-destruction cleanup
- get the branch destinations right for the empty check
Also some refactoring which unfortunately obscures these changes.
llvm-svn: 134890
is called whenever a tag type is completed. We previously used that
as the sign to layout the codegen representation for the tag type,
which worked but meant that we laid out *every* completed type, whether
it was used or not.
Now we just lay out the type if we've already seen it somehow else.
This means that we lay out types we've used but haven't seen a body
for, but we don't lay out tons of stuff that noone cares about.
llvm-svn: 134866
caused us to skip layout out a function accurately. If
so, flush the type cache for both the function and struct
case to ensure that any pointers to the functions get
recomputed. This is overconservative, but with this patch
clang can build itself again.
llvm-svn: 134863
conservative when converting a functiontype to IR when in a "pointer within
a struct" context. This has the unfortunate sideeffect of compiling all
function pointers inside of structs into "{}*" which, though correct, is
ugly. This has the positive side effect of being correct, and it is pretty
straight-forward to improve on this.
llvm-svn: 134861