The program point created by the checker, even if it is an error node,
might not be the same as the name under which the report is emitted.
Make sure we're checking the name of the checker, because thats what
we're silencing after all.
Differential Revision: https://reviews.llvm.org/D102683
When searching for stores and creating corresponding notes, the
analyzer is more specific about the target region of the store
as opposed to the stored value. While this description was tweaked
for constant and undefined values, it lacked in the most general
case of symbolic values.
This patch tries to find a memory region, where this value is stored,
to use it as a better alias for the value.
rdar://76645710
Differential Revision: https://reviews.llvm.org/D101041
Since we can report memory leaks on one variable, while the originally
allocated object was stored into another one, we should explain
how did it get there.
rdar://76645710
Differential Revision: https://reviews.llvm.org/D100852
When reporting leaks, we try to attach the leaking object to some
variable, so it's easier to understand. Before the patch, we always
tried to use the first variable that stored the object in question.
This can get very confusing for the user, if that variable doesn't
contain that object at the moment of the actual leak. In many cases,
the warning is dismissed as false positive and it is effectively a
false positive when we fail to properly explain the warning to the
user.
This patch addresses the bigest issue in cases like this. Now we
check if the variable still contains the leaking symbolic object.
If not, we look for the last variable to actually hold it and use
that variable instead.
rdar://76645710
Differential Revision: https://reviews.llvm.org/D100839
Allocation site is the key location for the leak checker. It is a
uniqueing location for the report and a source of information for
the warning's message.
Before this patch, we calculated and used it twice in bug report and
in bug report visitor. Such duplication is not only harmful
performance-wise (not much, but still), but also design-wise. Because
changing something about the end piece of the report should've been
repeated for description as well.
Differential Revision: https://reviews.llvm.org/D100626
When we report an argument constraint violation, we should track those
other arguments that participate in the evaluation of the violation. By
default, we depend only on the argument that is constrained, however,
there are some special cases like the buffer size constraint that might
be encoded in another argument(s).
Differential Revision: https://reviews.llvm.org/D101358
In this patch, I provide a detailed explanation for each argument
constraint. This explanation is added in an extra 'note' tag, which is
displayed alongside the warning.
Since these new notes describe clearly the constraint, there is no need
to provide the number of the argument (e.g. 'Arg3') within the warning.
However, I decided to keep the name of the constraint in the warning (but
this could be a subject of discussion) in order to be able to identify
the different kind of constraint violations easily in a bug database
(e.g. CodeChecker).
Differential Revision: https://reviews.llvm.org/D101060
Summary: Remove dispatchCast, evalCastFromNonLoc and evalCastFromLoc functions since their functionality has been moved to common evalCast function. Use evalCast instead.
Post-clean up patch for https://reviews.llvm.org/D96090 patch. The patch shall not change any behavior.
Differential Revision: https://reviews.llvm.org/D97277
Summary: Move logic from CastRetrievedVal to evalCast and replace CastRetrievedVal with evalCast. Also move guts from SimpleSValBuilder::dispatchCast inside evalCast.
evalCast intends to substitute dispatchCast, evalCastFromNonLoc and evalCastFromLoc in the future. OriginalTy provides additional information for casting, which is useful for some cases and useless for others. If `OriginalTy.isNull()` is true, then cast performs based on CastTy only. Now evalCast operates in two ways. It retains all previous behavior and take over dispatchCast behavior. dispatchCast, evalCastFromNonLoc and evalCastFromLoc is considered as buggy since it doesn't take into account OriginalTy of the SVal and should be improved.
From this patch use evalCast instead of dispatchCast, evalCastFromNonLoc and evalCastFromLoc functions. dispatchCast redirects to evalCast.
This patch shall not change any behavior.
Differential Revision: https://reviews.llvm.org/D96090
This implements C-style type conversions for matrix types, as specified
in clang/docs/MatrixTypes.rst.
Fixes PR47141.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D99037
It is common to zero-initialize not only scalar variables,
but also structs. This is also defensive programming and
we shouldn't complain about that.
rdar://34122265
Differential Revision: https://reviews.llvm.org/D99262
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
It is possible that an entry in 'DestroyRetVal' lives longer
than an entry in 'LockMap' if not removed at checkDeadSymbols.
The added test case demonstrates this.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D98504
This patch adds two debug functions to ExprInspectionChecker to dump out
the dynamic extent and element count of symbolic values:
dumpExtent(), dumpElementCount().
`allocClassWithName` allocates an object with the given type.
The type is actually provided as a string argument (type's name).
This creates a possibility for not particularly useful warnings
from the analyzer.
In order to combat with those, this patch checks for casts of the
`allocClassWithName` results to types mentioned directly as its
argument. All other uses of this method should be reasoned about
as before.
rdar://72165694
Differential Revision: https://reviews.llvm.org/D99500
It makes sense to track rvalue expressions in the case of special
concrete integer values. The most notable special value is zero (later
we may find other values). By tracking the origin of 0, we can provide a
better explanation for users e.g. in case of division by 0 warnings.
When the divisor is a product of a multiplication then now we can show
which operand (or both) was (were) zero and why.
Differential Revision: https://reviews.llvm.org/D99344
Currently, we infer 0 if the divisible of the modulo op is 0:
int a = x < 0; // a can be 0
int b = a % y; // b is either 1 % sym or 0
However, we don't when the op is / :
int a = x < 0; // a can be 0
int b = a / y; // b is either 1 / sym or 0 / sym
This commit fixes the discrepancy.
Differential Revision: https://reviews.llvm.org/D99343
ImmutableSet doesn't seem like the perfect fit for the RangeSet
data structure. It is good for saving memory in a persistent
setting, but not for the case when the population of the container
is tiny. This commit replaces RangeSet implementation and
redesigns the most common operations to be more efficient.
Differential Revision: https://reviews.llvm.org/D86465
Additionally, this patch puts an assertion checking for feasible
constraints in every place where constraints are assigned to states.
Differential Revision: https://reviews.llvm.org/D98948
This patch consists of the initial changes to help distinguish between text and binary content correctly on z/OS. I would like to get feedback from Windows users on setting OF_None for all ToolOutputFiles. This seems to have been done as an optimization to prevent CRLF translation on Windows in the past.
Reviewed By: zibi
Differential Revision: https://reviews.llvm.org/D97785
This category is generic enough to hold a variety of checkers.
Currently it contains the Dead Stores checker and an alpha unreachable
code checker.
Differential Revision: https://reviews.llvm.org/D98741
Added basic parsing/sema/serialization support for interop directive.
Support for the 'init' clause.
Differential Revision: https://reviews.llvm.org/D98558
The idiom:
```
DeclContext::lookup_result R = DeclContext::lookup(Name);
for (auto *D : R) {...}
```
is not safe when in the loop body we trigger deserialization from an AST file.
The deserialization can insert new declarations in the StoredDeclsList whose
underlying type is a vector. When the vector decides to reallocate its storage
the pointer we hold becomes invalid.
This patch replaces a SmallVector with an singly-linked list. The current
approach stores a SmallVector<NamedDecl*, 4> which is around 8 pointers.
The linked list is 3, 5, or 7. We do better in terms of memory usage for small
cases (and worse in terms of locality -- the linked list entries won't be near
each other, but will be near their corresponding declarations, and we were going
to fetch those memory pages anyway). For larger cases: the vector uses a
doubling strategy for reallocation, so will generally be between half-full and
full. Let's say it's 75% full on average, so there's N * 4/3 + 4 pointers' worth
of space allocated currently and will be 2N pointers with the linked list. So we
break even when there are N=6 entries and slightly lose in terms of memory usage
after that. We suspect that's still a win on average.
Thanks to @rsmith!
Differential revision: https://reviews.llvm.org/D91524
There is no syntax like {@code ...} in Doxygen, @code is a block command
that ends with @endcode, and generally these are not enclosed in braces.
The correct syntax for inline code snippets is @c <code>.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D98665
This patch fixes the situation when our knowledge of disequalities
can help us figuring out that some assumption is infeasible, but
the solver still produces a state with inconsistent constraints.
Additionally, this patch adds a couple of assertions to catch this
type of problems easier.
Differential Revision: https://reviews.llvm.org/D98341
If the non-iterator side of an iterator operation
`+`, `+=`, `-` or `-=` is `UndefinedVal` an assertions happens.
This small fix prevents this.
Patch by Adam Balogh.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D85424
`initFunctionSummaries` lazily initializes a data structure with
function summaries for standard library functions. It is called for
every pre-, post-, and eval-call events, i.e. 3 times for each call on
the path. If the initialization doesn't find any standard library
functions in the translation unit, it will get re-tried (with the same
effect) many times even for small translation units.
For projects not using standard libraries, the speed-up can reach 50%
after this patch.
Differential Revision: https://reviews.llvm.org/D98244
Removes `CrossTranslationUnitContext::getImportedFromSourceLocation`
Removes the corresponding unit-test segment.
Introduces the `CrossTranslationUnitContext::getMacroExpansionContextForSourceLocation`
which will return the macro expansion context for an imported TU. Also adds a
few implementation FIXME notes where applicable, since this feature is
not implemented yet. This fact is also noted as Doxygen comments.
Uplifts a few CTU LIT test to match the current **incomplete** behavior.
It is a regression to some extent since now we don't expand any
macros in imported TUs. At least we don't crash anymore.
Note that the introduced function is already covered by LIT tests.
Eg.: Analysis/plist-macros-with-expansion-ctu.c
Reviewed By: balazske, Szelethus
Differential Revision: https://reviews.llvm.org/D94673
Removes the obsolete ad-hoc macro expansions during bugreport constructions.
It will skip the macro expansion if the expansion happened in an imported TU.
Also removes the expected plist file, while expanding matching context for
the tests.
Adds a previously crashing `plist-macros-with-expansion.c` testfile.
Temporarily marks `plist-macros-with-expansion-ctu.c ` to `XFAIL`.
Reviewed By: xazax.hun, Szelethus
Differential Revision: https://reviews.llvm.org/D93224
Adds a `MacroExpansionContext` member to the `AnalysisConsumer` class.
Tracks macro expansions only if the `ShouldDisplayMacroExpansions` is set.
Passes a reference down the pipeline letting AnalysisConsumers query macro
expansions during bugreport construction.
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93223
The tile directive is in OpenMP's Technical Report 8 and foreseeably will be part of the upcoming OpenMP 5.1 standard.
This implementation is based on an AST transformation providing a de-sugared loop nest. This makes it simple to forward the de-sugared transformation to loop associated directives taking the tiled loops. In contrast to other loop associated directives, the OMPTileDirective does not use CapturedStmts. Letting loop associated directives consume loops from different capture context would be difficult.
A significant amount of code generation logic is taking place in the Sema class. Eventually, I would prefer if these would move into the CodeGen component such that we could make use of the OpenMPIRBuilder, together with flang. Only expressions converting between the language's iteration variable and the logical iteration space need to take place in the semantic analyzer: Getting the of iterations (e.g. the overload resolution of `std::distance`) and converting the logical iteration number to the iteration variable (e.g. overload resolution of `iteration + .omp.iv`). In clang, only CXXForRangeStmt is also represented by its de-sugared components. However, OpenMP loop are not defined as syntatic sugar. Starting with an AST-based approach allows us to gradually move generated AST statements into CodeGen, instead all at once.
I would also like to refactor `checkOpenMPLoop` into its functionalities in a follow-up. In this patch it is used twice. Once for checking proper nesting and emitting diagnostics, and additionally for deriving the logical iteration space per-loop (instead of for the loop nest).
Differential Revision: https://reviews.llvm.org/D76342
Summary: Refactor SValBuilder::evalCast function. Make the function clear and get rid of redundant and repetitive code. Unite SValBuilder::evalCast, SimpleSValBuilder::dispatchCast, SimpleSValBuilder::evalCastFromNonLoc and SimpleSValBuilder::evalCastFromLoc functions into single SValBuilder::evalCast.
This patch shall not change any previous behavior.
Differential Revision: https://reviews.llvm.org/D90157
This commit fixes bug #48739. The bug was caused by the way static_casts
on pointer-to-member caused the CXXBaseSpecifier list of a
MemberToPointer to grow instead of shrink.
The list is now grown by implicit casts and corresponding entries are
removed by static_casts. No-op static_casts cause no effect.
Reviewed By: vsavchenko
Differential Revision: https://reviews.llvm.org/D95877
Updates static analyzer to be able to generate both sarif and html
output in a single run similar to plist-html.
Differential Revision: https://reviews.llvm.org/D96389