When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file to
speed up debugging code generation passes and ld64 stuff after code generation.
llvm linking a single bitcode file via lto_codegen_add_module will generate a
different bitcode file from the single input. With the newly-added
lto_codegen_set_module, we can make sure the destination module is the same as
the input.
lto_codegen_set_module will transfer the ownship of the module to code
generator.
rdar://19024554
llvm-svn: 230290
This commit makes the following changes:
- Stop issuing a warning when the triples' string representations do not match
exactly if the Triple objects generated from the strings compare equal.
- On Apple platforms, choose the triple that has the larger minimum version
number.
rdar://problem/16743513
Differential Revision: http://reviews.llvm.org/D7591
llvm-svn: 228999
This allows IDEs to recognize the entire set of header files for
each of the core LLVM projects.
Differential Revision: http://reviews.llvm.org/D7526
Reviewed By: Chris Bieneman
llvm-svn: 228798
ConstantArrays constructed during linking can cause quadratic memory
explosion. An example is the ConstantArrays constructed when linking in
GlobalVariables with appending linkage.
Releasing all unused constants can cause a 20% LTO compile-time
slowdown for a large application. So this commit releases unused ConstantArrays
only.
rdar://19040716. It reduces memory footprint from 20+G to 6+G.
llvm-svn: 226592
The bitcode reading interface used std::error_code to report an error to the
callers and it is the callers job to print diagnostics.
This is not ideal for error handling or diagnostic reporting:
* For error handling, all that the callers care about is 3 possibilities:
* It worked
* The bitcode file is corrupted/invalid.
* The file is not bitcode at all.
* For diagnostic, it is user friendly to include far more information
about the invalid case so the user can find out what is wrong with the
bitcode file. This comes up, for example, when a developer introduces a
bug while extending the format.
The compromise we had was to have a lot of error codes.
With this patch we use the DiagnosticHandler to communicate with the
human and std::error_code to communicate with the caller.
This allows us to have far fewer error codes and adds the infrastructure to
print better diagnostics. This is so because the diagnostics are printed when
he issue is found. The code that detected the problem in alive in the stack and
can pass down as much context as needed. As an example the patch updates
test/Bitcode/invalid.ll.
Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the
caller. A simple one like llvm-dis can just use fatal errors. The gold plugin
needs a bit more complex treatment because of being passed non-bitcode files. An
hypothetical interactive tool would make all bitcode errors non-fatal.
llvm-svn: 225562
`MDNode::replaceOperandWith()` changes all instances of metadata. Stop
using it when linking module flags, since (due to uniquing) the flag
values could be used by other metadata.
Instead, use new API `NamedMDNode::setOperand()` to update the reference
directly.
llvm-svn: 225397
Instead of reusing the name `MapValue()` when mapping `Metadata`, use
`MapMetadata()`. The old name doesn't make much sense after the
`Metadata`/`Value` split.
llvm-svn: 224566
This reverts commit r224416, reapplying r224389. The buildbots hadn't
recovered after my revert, waiting until David reverted a couple of his
commits. It looks like it was just bad timing (where we were both
modifying code related to the same assertion). Trying again...
Here's the original text:
When a function gets replaced by `ModuleLinker`, drop superseded
subprograms. This ensures that the "first" subprogram pointing at a
function is the same one that `!dbg` references point at.
This is a stop-gap fix for PR21910. Notably, this fixes Release+Asserts
bootstraps that are currently asserting out in
`LexicalScopes::initialize()` due to the explicit instantiations in
`lib/IR/Dominators.cpp` eventually getting replaced by -argpromotion.
llvm-svn: 224487
When a function gets replaced by `ModuleLinker`, drop superseded
subprograms. This ensures that the "first" subprogram pointing at a
function is the same one that `!dbg` references point at.
This is a stop-gap fix for PR21910. Notably, this fixes Release+Asserts
bootstraps that are currently asserting out in
`LexicalScopes::initialize()` due to the explicit instantiations in
`lib/IR/Dominators.cpp` eventually getting replaced by -argpromotion.
llvm-svn: 224389
r223763 was made to work around a temporary issue where a user of the
JIT was passing down a declaration (incorrectly). This shouldn't
occur, so assert rather than silently continue.
llvm-svn: 224277
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
This is a revert of r223521 in spirit, if not in content. I am not
sure why declarations ended up in LazilyLinkGlobalValues in the first
place; that will take some more investigation.
llvm-svn: 223763
We were already lazily linking functions, but all GlobalValues can be treated
uniformly for this.
The test updates are to ensure that a given GlobalValue is still linked in.
This fixes pr21494.
llvm-svn: 223681
The non-opaque part can be structurally uniqued. To keep this to just
a hash lookup, we don't try to unique cyclic types.
Also change the type mapping algorithm to be optimistic about a type
not being recursive and only create a new type when proven to be wrong.
This is not as strong as trying to speculate that we can keep the source
type, but is simpler (no speculation to revert) and more powerfull
than what we had before (we don't copy non-recursive types at least).
I initially wrote this to try to replace the name based type merging.
It is not strong enough to replace it, but is is a useful addition.
With this patch the number of named struct types is a clang lto bootstrap goes
from 49674 to 15986.
llvm-svn: 223278
When lazy reading a module, the types used in a function will not be visible to
a TypeFinder until the body is read.
This patch fixes that by asking the module for its identified struct types.
If a materializer is present, the module asks it. If not, it uses a TypeFinder.
This fixes pr21374.
I will be the first to say that this is ugly, but it was the best I could find.
Some of the options I looked at:
* Asking the LLVMContext. This could be made to work for gold, but not currently
for ld64. ld64 will load multiple modules into a single context before merging
them. This causes us to see types from future merges. Unfortunately,
MappedTypes is not just a cache when it comes to opaque types. Once the
mapping has been made, we have to remember it for as long as the key may
be used. This would mean moving MappedTypes to the Linker class and having
to drop the Linker::LinkModules static methods, which are visible from C.
* Adding an option to ignore function bodies in the TypeFinder. This would
fix the PR by picking the worst result. It would work, but unfortunately
we are currently quite dependent on the upfront type merging. I will
try to reduce our dependency, but it is not clear that we will be able
to get rid of it for now.
The only clean solution I could think of is making the Module own the types.
This would have other advantages, but it is a much bigger change. I will
propose it, but it is nice to have this fixed while that is discussed.
With the gold plugin, this patch takes the number of types in the LTO clang
binary from 52817 to 49669.
llvm-svn: 223215
Patch by Ben Gamari!
This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute. There are a two primary usecases
that these attributes aim to serve,
1. Function prologue sigils
2. Function hot-patching: Enable the user to insert `nop` operations
at the beginning of the function which can later be safely replaced
with a call to some instrumentation facility
3. Runtime metadata: Allow a compiler to insert data for use by the
runtime during execution. GHC is one example of a compiler that
needs this functionality for its tables-next-to-code functionality.
Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.
Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.
The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.
The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.
References
----------
This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html
Test Plan: testsuite
Differential Revision: http://reviews.llvm.org/D6454
llvm-svn: 223189
The explicit set of destination types is not fully redundant when lazy loading
since the TypeFinder will not find types used only in function bodies.
This keeps the logic to drop the name of mapped types since it still helps
with avoiding further renaming.
llvm-svn: 223043
Instead of keeping an explicit set, just drop the names of types we choose
to map to some other type.
This has the advantage that the name of the unused will not cause the context
to rename types on module read.
llvm-svn: 222986
The original patch would fail when:
* A dst opaque type (%A) is matched with a src type (%A).
* A src opaque (%E) type is then speculatively matched with %A and the
speculation fails afterward.
* When rolling back the speculation we would cancel the source %A to dest
%A mapping.
The fix is to keep an explicit list of which resolutions are speculative.
Original message:
Fix overly aggressive type merging.
If we find out that two types are *not* isomorphic, we learn nothing about
opaque sub types in both the source and destination.
llvm-svn: 222923
This reverts commit r222727, which causes LTO bootstrap failures.
Last passing @ r222698:
http://lab.llvm.org:8080/green/job/clang-Rlto_master_build/532/
First failing @ r222843:
http://lab.llvm.org:8080/green/job/clang-Rlto_master_build/533/
Internal bootstraps pointed at a much narrower range: r222725 is
passing, and r222731 is failing.
LTO crashes while handling libclang.dylib:
http://lab.llvm.org:8080/green/job/clang-Rlto_master_build/533/consoleFull#-158682280549ba4694-19c4-4d7e-bec5-911270d8a58c
GEP is not of right type for indices!
%InfoObj.i.i = getelementptr inbounds %"class.llvm::OnDiskIterableChainedHashTable"* %.lcssa, i64 0, i32 0, i32 4, !dbg !123627
%"class.clang::serialization::reader::ASTIdentifierLookupTrait" = type { %"class.clang::ASTReader.31859"*, %"class.clang::serialization::ModuleFile.31870"*, %"class.clang::IdentifierInfo"* }LLVM ERROR: Broken function found, compilation aborted!
clang: error: linker command failed with exit code 1 (use -v to see invocation)
Looks like the new algorithm doesn't merge types aggressively enough.
llvm-svn: 222895
This changes the order in which different types are passed to get, but
one order is not inherently better than the other.
The main motivation is that this simplifies linkDefinedTypeBodies now that
it is only linking "real" opaque types. It is also means that we only have to
call it once and that we don't need getImpl.
A small change in behavior is that we don't copy type names when resolving
opaque types. This is an improvement IMHO, but it can be added back if
desired. A test is included with the new behavior.
llvm-svn: 222764
Exactly the same checks are present in areTypesIsomorphic.
This might have been a premature performance optimization. I cannot reproduce
any slowdown with this patch.
llvm-svn: 222758