These verify calls are causing a lot of slowdown on some files, up to 8x.
The LazyCallGraph infra has been tested a lot over the years, so I'm fairly confident that we don't always need to run the verifys.
These verifies took >90% of total time in one of the compilations I looked at.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D97225
Previously when trying to support CoroSplit's function splitting, we
added in a hack that simply added the new function's node into the
original function's SCC (https://reviews.llvm.org/D87798). This is
incorrect since it might be in its own SCC.
Now, more similar to the previous design, we have callers explicitly
notify the LazyCallGraph that a function has been split out from another
one.
In order to properly support CoroSplit, there are two ways functions can
be split out.
One is the normal expected "outlining" of one function into a new one.
The new function may only contain references to other functions that the
original did. The original function must reference the new function. The
new function may reference the original function, which can result in
the new function being in the same SCC as the original function. The
weird case is when the original function indirectly references the new
function, but the new function directly calls the original function,
resulting in the new SCC being a parent of the original function's SCC.
This form of function splitting works with CoroSplit's Switch ABI.
The second way of splitting is more specific to CoroSplit. CoroSplit's
Retcon and Async ABIs split the original function into multiple
functions that all reference each other and are referenced by the
original function. In order to keep the LazyCallGraph in a valid state,
all new functions must be processed together, else some nodes won't be
populated. To keep things simple, this only supports the case where all
new edges are ref edges, and every new function references every other
new function. There can be a reference back from any new function to the
original function, putting all functions in the same RefSCC.
This also adds asserts that all nodes in a (Ref)SCC can reach all other
nodes to prevent future incorrect hacks.
The original hacks in https://reviews.llvm.org/D87798 are no longer
necessary since all new functions should have been registered before
calling updateCGAndAnalysisManagerForPass.
This fixes all coroutine tests when opt's -enable-new-pm is true by
default. This also fixes PR48190, which was likely due to the previous
hack breaking SCC invariants.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D93828
This was separated in the past because the cl::opt was in the .cpp file
but DevirtSCCRepeatedPass::run() was in the .h file. Now that
DevirtSCCRepeatedPass::run() is in the .cpp file, get rid of the tiny
maxDevirtIterationsReached(), it's bad for readability.
Currently PassBuilder.cpp is by far the file that takes longest to
compile. This is due to tons of templates being instantiated per pass.
Follow PassManager by using wrappers around passes to avoid making
the adaptors templated on the pass type. This allows us to move various
adaptors' run methods into .cpp files.
This reduces the compile time of PassBuilder.cpp on my machine from 66
to 39 seconds. It also reduces the size of opt from 685M to 676M.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D92616
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.
This fixes some tests testing this exact behavior in the legacy PM.
Instead of checking WeakTrackingVHs for CallBases at the very beginning
and end of the pass it wraps, check every time
updateCGAndAnalysisManagerForPass() is called.
check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).
http://llvm-compile-time-tracker.com/?config=O3&stat=instructions&remote=aeubanks
shows that 7zip has ~1% compile time regression. I looked at it and saw
that there indeed was devirtualization happening that was not previously
caught, so now it reruns the CGSCC pipeline on some SCCs, which is WAI.
The initial land assumed CallBase WeakTrackingVHs would always be
CallBases, but they can be RAUW'd with undef.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89587
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.
This fixes some tests testing this exact behavior in the legacy PM.
Instead of checking WeakTrackingVHs for CallBases at the very beginning
and end of the pass it wraps, check every time
updateCGAndAnalysisManagerForPass() is called.
check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).
http://llvm-compile-time-tracker.com/?config=O3&stat=instructions&remote=aeubanks
shows that 7zip has ~1% compile time regression. I looked at it and saw
that there indeed was devirtualization happening that was not previously
caught, so now it reruns the CGSCC pipeline on some SCCs, which is WAI.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89587
Previously the inliner did a bit of a hack by adding ref edges for all
new edges introduced by performing an inline before calling
updateCGAndAnalysisManagerForPass(). This was because
updateCGAndAnalysisManagerForPass() didn't handle new non-trivial call
edges.
This adds handling of non-trivial call edges to
updateCGAndAnalysisManagerForPass(). The inliner called
updateCGAndAnalysisManagerForFunctionPass() since it was handling adding
newly introduced edges (so updateCGAndAnalysisManagerForPass() would
only have to handle promotion), but now it needs to call
updateCGAndAnalysisManagerForCGSCCPass() since
updateCGAndAnalysisManagerForPass() is now handling the new call edges
and function passes cannot add new edges.
We follow the previous path of adding trivial ref edges then letting promotion
handle changing the ref edges to call edges and the CGSCC updates. So
this still does not allow adding call edges that result in an addition
of a non-trivial ref edge.
This is in preparation for better detecting devirtualization. Previously
since the inliner itself would add ref edges,
updateCGAndAnalysisManagerForPass() would think that promotion and thus
devirtualization had happened after any sort of inlining.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D91046
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.
This fixes some tests testing this exact behavior in the legacy PM.
This piggybacks off of updateCGAndAnalysisManagerForPass()'s detection
of promoted ref to call edges.
This supercedes one of the previous mechanisms to detect
devirtualization by keeping track of potentially promoted call
instructions via WeakTrackingVHs.
There is one more existing way of detecting devirtualization, by
checking if the number of indirect calls has decreased and the number of
direct calls has increased in a function. It handles cases where calls
to functions without definitions are promoted, and some tests rely on
that. LazyCallGraph doesn't track edges to functions without
definitions so this part can't be removed in this change.
check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89587
Aborts if we hit the max devirtualization iteration.
Will be useful for testing that changes to devirtualization don't cause
devirtualization to repeat passes more times than necessary.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D89519
This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.
However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.
This also fixes an issue I was seeing with newly created functions not
having passes run on them.
Ran check-llvm with expensive checks.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87798
Both AfterPass and AfterPassInvalidated pass instrumentation
callbacks get additional parameter of type PreservedAnalyses.
This patch was created by @fedor.sergeev. I have just slightly
changed it.
Reviewers: fedor.sergeev
Differential Revision: https://reviews.llvm.org/D81555
Problem:
Right now, our "Running pass" is not accurate when passes are wrapped in adaptor because adaptor is never skipped and a pass could be skipped. The other problem is that "Running pass" for a adaptor is before any "Running pass" of passes/analyses it depends on. (for example, FunctionToLoopPassAdaptor). So the order of printing is not the actual order.
Solution:
Doing things like PassManager::Debuglogging is very intrusive because we need to specify Debuglogging whenever adaptor is created. (Actually, right now we're not specifying Debuglogging for some sub-PassManagers. Check PassBuilder)
This patch move debug logging for pass as a PassInstrument callback. We could be sure that all running passes are logged and in the correct order.
This could also be used to implement hierarchy pass logging in legacy PM. We could also move logging of pass manager to this if we want.
The test fixes looks messy. It includes changes:
- Remove PassInstrumentationAnalysis
- Remove PassAdaptor
- If a PassAdaptor is for a real pass, the pass is added
- Pass reorder (to the correct order), related to PassAdaptor
- Add missing passes (due to Debuglogging not passed down)
Reviewed By: asbirlea, aeubanks
Differential Revision: https://reviews.llvm.org/D84774
For passes got skipped, this is confusing because the log said it is `running pass`
but it is skipped later.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D82511
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.
Reviewers: chandlerc
Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72893
With the addition of the LLD time tracing it made sense to include coverage
for LLVM's various passes. Doing so ensures that ThinLTO is also covered
with a time trace.
Before:
{F11333974}
After:
{F11333928}
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D74516
ClangBuildAnalyzer results show that a lot of time is spent
instantiating AnalysisManager::getResultImpl across the code base:
**** Templates that took longest to instantiate:
50445 ms: llvm::AnalysisManager<llvm::Function>::getResultImpl (412 times, avg 122 ms)
47797 ms: llvm::AnalysisManager<llvm::Function>::getResult<llvm::TargetLibraryAnalysis> (389 times, avg 122 ms)
46894 ms: std::tie<const unsigned long long, const bool> (2452 times, avg 19 ms)
43851 ms: llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, 4096, 4096>::Allocate (3228 times, avg 13 ms)
33911 ms: std::tie<const unsigned int, const unsigned int, const unsigned int, const unsigned int> (897 times, avg 37 ms)
33854 ms: std::tie<const unsigned long long, const unsigned long long> (1897 times, avg 17 ms)
27886 ms: std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string (11156 times, avg 2 ms)
I mentioned this result to @chandlerc, and he suggested this direction.
AnalysisManager is already explicitly instantiated, and getResultImpl
doesn't need to be inlined. Move the definition to an Impl header, and
include that header in files that explicitly instantiate
AnalysisManager. There are only four (real) IR units:
- function
- module
- loop
- cgscc
Looking at a specific transform (ArgumentPromotion.cpp), here are three
compilations before & after this change:
BEFORE:
$ for i in $(seq 3) ; do ./ccit.bat ; done
peak memory: 258.15MB
real: 0m6.297s
peak memory: 257.54MB
real: 0m5.906s
peak memory: 257.47MB
real: 0m6.219s
AFTER:
$ for i in $(seq 3) ; do ./ccit.bat ; done
peak memory: 235.35MB
real: 0m5.454s
peak memory: 234.72MB
real: 0m5.235s
peak memory: 234.39MB
real: 0m5.469s
The 20MB of memory saved seems real, and the time improvement seems like
it is there.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D73817
With this patch new trivial edges can be added to an SCC in a CGSCC
pass via the updateCGAndAnalysisManagerForCGSCCPass method. It shares
almost all the code with the existing
updateCGAndAnalysisManagerForFunctionPass method but it implements the
first step towards the TODOs.
This was initially part of D70927.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D72025
For indirect call sites having a small set of possible callees,
!callees metadata can be used to indicate what those callees are.
This patch updates the call graph and lazy call graph analyses so
that they consider this metadata when encountering call sites. For
the call graph, it adds a new external call graph node to the graph
for each unique !callees metadata node. A call graph edge connects
an indirect call site with the external node associated with the
!callees metadata that is attached to it. And there is an edge from
this external node to each of the callees indicated by the metadata.
Similarly, for the lazy call graph, the patch adds Ref edges from a
caller to the possible callees indicated by the metadata.
The primary purpose of the patch is to facilitate iterating over the
functions in a module such that all of the callees indicated by a
given !callees metadata node will be visited prior to the functions
containing call sites annotated by that node. This property is
required by optimizations performing a bottom-up traversal of the
SCC DAG. For example, the inliner can be made to inline through an
indirect call. If the call site is annotated with !callees metadata,
this patch ensures that the inliner will have visited all of the
callees prior to the caller, allowing it to reliably compute the
cost of inlining one or more of the potential callees.
Original patch by @mssimpso. I've made some small changes to get it
to apply, build, and pass tests on the top of tree, as well as
some minor tweaks to formatting and functionality.
Subscribers: mehdi_amini, hiraditya, llvm-commits, mssimpso
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D39339
llvm-svn: 369025
The issue here is that we actually allow CGSCC passes to mutate IR (and
therefore invalidate analyses) outside of the current SCC. At a minimum,
we need to support mutating parent and ancestor SCCs to support the
ArgumentPromotion pass which rewrites all calls to a function.
However, the analysis invalidation infrastructure is heavily based
around not needing to invalidate the same IR-unit at multiple levels.
With Loop passes for example, they don't invalidate other Loops. So we
need to customize how we handle CGSCC invalidation. Doing this without
gratuitously re-running analyses is even harder. I've avoided most of
these by using an out-of-band preserved set to accumulate the cross-SCC
invalidation, but it still isn't perfect in the case of re-visiting the
same SCC repeatedly *but* it coming off the worklist. Unclear how
important this use case really is, but I wanted to call it out.
Another wrinkle is that in order for this to successfully propagate to
function analyses, we have to make sure we have a proxy from the SCC to
the Function level. That requires pre-creating the necessary proxy.
The motivating test case now works cleanly and is added for
ArgumentPromotion.
Thanks for the review from Philip and Wei!
Differential Revision: https://reviews.llvm.org/D59869
llvm-svn: 357137
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
IR-printing AfterPass instrumentation might be called on a loop
that has just been invalidated. We should skip printing it to
avoid spurious asserts.
Reviewed By: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D54740
llvm-svn: 348887
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Summary:
And now that we no longer have to explicitly free() the Loop instances, we can
(with more ease) use the destructor of LoopBase to do what LoopBase::clear() was
doing.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38201
llvm-svn: 314375
invalidated SCCs even when we do not have an updated SCC to redirect
towards.
This comes up in a fairly subtle and surprising circumstance: we need to
have a connected but internal node in the call graph which later becomes
a disconnected island, and then gets deleted. All of this needs to
happen mid-CGSCC walk. Because it is disconnected, we have no way of
computing a new "current" SCC when it gets deleted. Instead, we need to
explicitly check for a deleted "current" SCC and bail out of the current
CGSCC step. This will bubble all the way up to the post-order walk and
then resume correctly.
I've included minimal tests for this bug. The specific behavior
matches something we've seen in the wild with the new PM combined with
ThinLTO and sample PGO, but I've not yet confirmed whether this is the
only issue there.
llvm-svn: 313242
printing techniques with a DEBUG_TYPE controlling them.
It was a mistake to start re-purposing the pass manager `DebugLogging`
variable for generic debug printing -- those logs are intended to be
very minimal and primarily used for testing. More detailed and
comprehensive logging doesn't make sense there (it would only make for
brittle tests).
Moreover, we kept forgetting to propagate the `DebugLogging` variable to
various places making it also ineffective and/or unavailable. Switching
to `DEBUG_TYPE` makes this a non-issue.
llvm-svn: 310695
limited batch updates.
Specifically, allow removing multiple reference edges starting from
a common source node. There are a few constraints that play into
supporting this form of batching:
1) The way updates occur during the CGSCC walk, about the most we can
functionally batch together are those with a common source node. This
also makes the batching simpler to implement, so it seems
a worthwhile restriction.
2) The far and away hottest function for large C++ files I measured
(generated code for protocol buffers) showed a huge amount of time
was spent removing ref edges specifically, so it seems worth focusing
there.
3) The algorithm for removing ref edges is very amenable to this
restricted batching. There are just both API and implementation
special casing for the non-batch case that gets in the way. Once
removed, supporting batches is nearly trivial.
This does modify the API in an interesting way -- now, we only preserve
the target RefSCC when the RefSCC structure is unchanged. In the face of
any splits, we create brand new RefSCC objects. However, all of the
users were OK with it that I could find. Only the unittest needed
interesting updates here.
How much does batching these updates help? I instrumented the compiler
when run over a very large generated source file for a protocol buffer
and found that the majority of updates are intrinsically updating one
function at a time. However, nearly 40% of the total ref edges removed
are removed as part of a batch of removals greater than one, so these
are the cases batching can help with.
When compiling the IR for this file with 'opt' and 'O3', this patch
reduces the total time by 8-9%.
Differential Revision: https://reviews.llvm.org/D36352
llvm-svn: 310450
This was just a bad oversight on my part. The code in question should
never have worked without this fix. But it turns out, there are
relatively few places that involve libfunctions that participate in
a single SCC, and unless they do, this happens to not matter.
The effect of not having this correct is that each time through this
routine, the edge from write_wrapper to write was toggled between a call
edge and a ref edge. First time through, it becomes a demoted call edge
and is turned into a ref edge. Next time it is a promoted call edge from
a ref edge. On, and on it goes forever.
I've added the asserts which should have always been here to catch silly
mistakes like this in the future as well as a test case that will
actually infloop without the fix.
The other (much scarier) infinite-inlining issue I think didn't actually
occur in practice, and I simply misdiagnosed this minor issue as that
much more scary issue. The other issue *is* still a real issue, but I'm
somewhat relieved that so far it hasn't happened in real-world code
yet...
llvm-svn: 310342
function to every defined function known to LLVM as a library function.
LLVM can introduce calls to these functions either by replacing other
library calls or by recognizing patterns (such as memset_pattern or
vector math patterns) and replacing those with calls. When these library
functions are actually defined in the module, we need to have reference
edges to them initially so that we visit them during the CGSCC walk in
the right order and can effectively rebuild the call graph afterward.
This was discovered when building code with Fortify enabled as that is
a common case of both inline definitions of library calls and
simplifications of code into calling them.
This can in extreme cases of LTO-ing with libc introduce *many* more
reference edges. I discussed a bunch of different options with folks but
all of them are unsatisfying. They either make the graph operations
substantially more complex even when there are *no* defined libfuncs, or
they introduce some other complexity into the callgraph. So this patch
goes with the simplest possible solution of actual synthetic reference
edges. If this proves to be a memory problem, I'm happy to implement one
of the clever techniques to save memory here.
llvm-svn: 308088
I used the wrong variable to update. This was even covered by a unittest
I wrote, and the comments for the unittest were correct (if confusing)
but the test itself just matched the buggy behavior. =[
llvm-svn: 307764
invalidation of analyses when merging SCCs.
While I've added a bunch of testing of this, it takes something much
more like the inliner to really trigger this as you need to have
partially-analyzed SCCs with updates at just the right time. So I've
added a direct test for this using the inliner and verifying the
domtree. Without the changes here, this test ends up finding a stale
dominator tree.
However, to handle this properly, we need to invalidate analyses
*before* merging the SCCs. After talking to Philip and Sanjoy about this
they convinced me this was the right approach. To do this, we need
a callback mechanism when merging SCCs so we can observe the cycle that
will be merged before the merge happens. This API update ended up being
surprisingly easy.
With this commit, the new PM passes the test-suite again. It hadn't
since MemorySSA was enabled for EarlyCSE as that also will find this bug
very quickly.
llvm-svn: 307498
dependencies between analyses.
This uncovers even more issues with the proxies and the splitting apart
of SCCs which are fixed in this patch. I discovered this while trying to
add more rigorous testing for a change I'm making to the call graph
update invalidation logic.
llvm-svn: 307497
the invalidation propagation logic from an SCC to a Function.
I wrote the infrastructure to test this but didn't actually use it in
the unit test where it was designed to be used. =[ My bad. Once
I actually added it to the test case I discovered that it also hadn't
been properly implemented, so I've implemented it. The logic in the FAM
proxy for an SCC pass to propagate invalidation follows the same ideas
as the FAM proxy for a Module pass, but the implementation is a bit
different to reflect the fact that it is forwarding just for an SCC.
However, implementing this correctly uncovered a surprising "bug" (it
was conservatively correct but relatively very expensive) in how we
handle invalidation when splitting one SCC into multiple SCCs. We did an
eager invalidation when in reality we should be deferring invaliadtion
for the *current* SCC to the CGSCC pass manager and just invaliating the
newly constructed SCCs. Otherwise we end up invalidating too much too
soon. This was exposed by the inliner test case that I've updated. Now,
we invalidate *just* the split off '(test1_f)' SCC when doing the CG
update, and then the inliner finishes and invalidates the '(test1_g,
test1_h)' SCC's analyses. The first few attempts at fixing this hit
still more bugs, but all of those are covered by existing tests. For
example, the inliner should also preserve the FAM proxy to avoid
unnecesasry invalidation, and this is safe because the CG update
routines it uses handle any necessary adjustments to the FAM proxy.
Finally, the unittests for the CGSCC pass manager needed a bunch of
updates where we weren't correctly preserving the FAM proxy because it
hadn't been fully implemented and failing to preserve it didn't matter.
Note that this doesn't yet fix the current crasher due to MemSSA finding
a stale dominator tree, but without this the fix to that crasher doesn't
really make any sense when testing because it relies on the proxy
behavior.
llvm-svn: 307487
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653