https://gcc.gnu.org/onlinedocs/gcc/Typeof.html
Differences from the GCC extension:
* __auto_type is also permitted in C++ (but only in places where
it could appear in C), allowing its use in headers that might
be shared across C and C++, or used from C++98
* __auto_type can be combined with a declarator, as with C++ auto
(for instance, "__auto_type *p")
* multiple variables can be declared in a single __auto_type
declaration, with the C++ semantics (the deduced type must be
the same in each case)
This patch also adds a missing restriction on applying typeof to
a bit-field, which GCC has historically rejected in C (due to
lack of clarity as to whether the operand should be promoted).
The same restriction also applies to __auto_type in C (in both
GCC and Clang).
This also fixes PR25449.
Patch by Nicholas Allegra!
llvm-svn: 252690
This doesn't quite get alias template equivalence right yet, but handles the
egregious cases where we would silently give the wrong answers.
llvm-svn: 248431
This flag causes the compiler to emit bit set entries for functions as well
as runtime bitset checks at indirect call sites. Depends on the new function
bitset mechanism.
Differential Revision: http://reviews.llvm.org/D11857
llvm-svn: 247238
Adds parsing/sema analysis/serialization/deserialization for array sections in OpenMP constructs (introduced in OpenMP 4.0).
Currently it is allowed to use array sections only in OpenMP clauses that accepts list of expressions.
Differential Revision: http://reviews.llvm.org/D10732
llvm-svn: 245937
After r244870 flush() will only compare two null pointers and return,
doing nothing but wasting run time. The call is not required any more
as the stream and its SmallString are always in sync.
Thanks to David Blaikie for reviewing.
llvm-svn: 244928
Function types without prototypes can arise when mangling a function type
within an overloadable function in C. We mangle these as the absence of
any parameter types (not even an empty parameter list).
Differential Revision: http://reviews.llvm.org/D11848
llvm-svn: 244374
set_size only resets the end pointer and asserts if it is used to grow
the buffer. This would crash when mangling a float with more than 80 bits,
add a test with a ppc double double (128 bits).
Found by inspection.
llvm-svn: 243979
The __kindof type qualifier can be applied to Objective-C object
(pointer) types to indicate id-like behavior, which includes implicit
"downcasting" of __kindof types to subclasses and id-like message-send
behavior. __kindof types provide better type bounds for substitutions
into unspecified generic types, which preserves more type information.
llvm-svn: 241548
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
Clang's control flow integrity implementation works by conceptually attaching
"tags" (in the form of bitset entries) to each virtual table, identifying
the names of the classes that the virtual table is compatible with. Under
the Itanium ABI, it is simple to assign tags to virtual tables; they are
simply the address points, which are available via VTableLayout. Because any
overridden methods receive an entry in the derived class's virtual table,
a check for an overridden method call can always be done by checking the
tag of whichever derived class overrode the method call.
The Microsoft ABI is a little different, as it does not directly use address
points, and overrides in a derived class do not cause new virtual table entries
to be added to the derived class; instead, the slot in the base class is
reused, and the compiler needs to adjust the this pointer at the call site
to (generally) the base class that initially defined the method. After the
this pointer has been adjusted, we cannot check for the derived class's tag,
as the virtual table may not be compatible with the derived class. So we
need to determine which base class we have been adjusted to.
Specifically, at each call site, we use ASTRecordLayout to identify the most
derived class whose virtual table is laid out at the "this" pointer offset
we are using to make the call, and check the virtual table for that tag.
Because address point information is unavailable, we "reconstruct" it as
follows: any virtual tables we create for a non-derived class receive a tag
for that class, and virtual tables for a base class inside a derived class
receive a tag for the base class, together with tags for any derived classes
which are laid out at the same position as the derived class (and therefore
have compatible virtual tables).
Differential Revision: http://reviews.llvm.org/D10520
llvm-svn: 240117
Based on previous discussion on the mailing list, clang currently lacks support
for C99 partial re-initialization behavior:
Reference: http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-April/029188.html
Reference: http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_253.htm
This patch attempts to fix this problem.
Given the following code snippet,
struct P1 { char x[6]; };
struct LP1 { struct P1 p1; };
struct LP1 l = { .p1 = { "foo" }, .p1.x[2] = 'x' };
// this example is adapted from the example for "struct fred x[]" in DR-253;
// currently clang produces in l: { "\0\0x" },
// whereas gcc 4.8 produces { "fox" };
// with this fix, clang will also produce: { "fox" };
Differential Review: http://reviews.llvm.org/D5789
llvm-svn: 239446
GCC mangles long double like __float128 in order to support
compatibility with ABI variants which had a different interpretation of
long double.
This fixes PR23791.
llvm-svn: 239421
When we find a member of the current instantation, the base of the
unresolved member expression is implicit; use nullptr for such
bases. This is not a change in behavior: the AST already contains null
in such cases, so non-asserts builds do the right thing already. Fixes
rdar://problem/21020559.
llvm-svn: 237929
Even though these symbols are in a comdat group, the Microsoft linker
really wants them to have internal linkage.
I'm planning to tweak the mangling in a follow-up change. This is a
straight revert with a 1-line fix.
llvm-svn: 234613
WinEHPrepare was going to have to pattern match the control flow merge
and split that the old lowering used, and that wasn't really feasible.
Now we can teach WinEHPrepare to pattern match this, which is much
simpler:
%fp = call i8* @llvm.frameaddress(i32 0)
call void @func(iN [01], i8* %fp)
This prototype happens to match the prototype used by the Win64 SEH
personality function, so this is really simple.
llvm-svn: 234532
This adds support for copy-constructor closures. These are generated
when the C++ runtime has to call a copy-constructor with a particular
calling convention or with default arguments substituted in to the call.
Because the runtime has no mechanism to call the function with a
different calling convention or know-how to evaluate the default
arguments at run-time, we create a thunk which will do all the
appropriate work and package it in a way the runtime can use.
Differential Revision: http://reviews.llvm.org/D8225
llvm-svn: 231952
This patch introduces the -fsanitize=cfi-vptr flag, which enables a control
flow integrity scheme that checks that virtual calls take place using a vptr of
the correct dynamic type. More details in the new docs/ControlFlowIntegrity.rst
file.
It also introduces the -fsanitize=cfi flag, which is currently a synonym for
-fsanitize=cfi-vptr, but will eventually cover all CFI checks implemented
in Clang.
Differential Revision: http://reviews.llvm.org/D7424
llvm-svn: 230055
extern "C" declarations should be considered like global declarations
for mangling purposes.
Differential Revision: http://reviews.llvm.org/D7718
llvm-svn: 229724
We attempted to be compatible with GCC's buggy mangling for templates
with a declaration for a template argument.
However, we weren't completely successful in copying their bug in cases
like:
char foo;
template <char &C> decltype(C) f() { return foo; };
template char &f<foo>();
Instead, just follow the ABI specification. This fixes PR22621.
llvm-svn: 229644
Our mangling of <destructor-name> wasn't quite right: we'd introduce
mangling substitutions where one shouldn't be possible. We also didn't
correctly handle the case where the destroyed type was not dependent but
still a TemplateSpecializationType.
N.B. There isn't a mangling for a template-template parameter showing up
as the destroyed type. We do the 'obvious' thing and mangle the index
of the parameter.
llvm-svn: 229615
We had two bugs:
- We were missing the "on" prefix for unresolved operators.
- We didn't handle the mangling of destructors at all.
This fixes PR22584.
llvm-svn: 229255
initializer of the form {x}, where x is of type C or a type derived from C,
perform *non-list* initialization of the entity from x, but create a
CXXConstructExpr that knows that we used list-initialization syntax.
Plus some fixes to ensure we mangle correctly in this and related cases.
llvm-svn: 228276
The lowering looks a lot like normal EH lowering, with the exception
that the exceptions are caught by executing filter expression code
instead of matching typeinfo globals. The filter expressions are
outlined into functions which are used in landingpad clauses where
typeinfo would normally go.
Major aspects that still need work:
- Non-call exceptions in __try bodies won't work yet. The plan is to
outline the __try block in the frontend to keep things simple.
- Filter expressions cannot use local variables until capturing is
implemented.
- __finally blocks will not run after exceptions. Fixing this requires
work in the LLVM SEH preparation pass.
The IR lowering looks like this:
// C code:
bool safe_div(int n, int d, int *r) {
__try {
*r = normal_div(n, d);
} __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) {
return false;
}
return true;
}
; LLVM IR:
define i32 @filter(i8* %e, i8* %fp) {
%ehptrs = bitcast i8* %e to i32**
%ehrec = load i32** %ehptrs
%code = load i32* %ehrec
%matches = icmp eq i32 %code, i32 u0xC0000094
%matches.i32 = zext i1 %matches to i32
ret i32 %matches.i32
}
define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) {
%rr = invoke i32 @normal_div(i32 %n, i32 %d)
to label %normal unwind to label %lpad
normal:
store i32 %rr, i32* %r
ret i1 1
lpad:
%ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler
catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*)
%ehptr = extractvalue {i8*, i32} %ehvals, i32 0
%sel = extractvalue {i8*, i32} %ehvals, i32 1
%filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*))
%matches = icmp eq i32 %sel, %filter_sel
br i1 %matches, label %eh.except, label %eh.resume
eh.except:
ret i1 false
eh.resume:
resume
}
Reviewers: rjmccall, rsmith, majnemer
Differential Revision: http://reviews.llvm.org/D5607
llvm-svn: 226760
A discriminator is used for the first occurrence of a name.
inline int f1 () {
static union {
int a;
long int b;
};
static union {
int c;
double d;
};
return a+c;
}
The name of the second union is mangled as _ZZ2f1vE1c_0 instead of _ZZ2f1vE1c.
Differential Revision: http://reviews.llvm.org/D6295
llvm-svn: 224131
This is a new form of expression of the form:
(expr op ... op expr)
where one of the exprs is a parameter pack. It expands into
(expr1 op (expr2onwards op ... op expr))
(and likewise if the pack is on the right). The non-pack operand can be
omitted; in that case, an empty pack gives a fallback value or an error,
depending on the operator.
llvm-svn: 221573
Template template parameters weren't added to the list of substitutions.
This would make the substitution map contain inaccurate mappings,
leading to Clang violating the Itanium ABI and breaking compatibility
with GCC.
This fixes PR21351.
Differential Revision: http://reviews.llvm.org/D5959
llvm-svn: 220588
Plumb through the full QualType of the TemplateArgument::Declaration, as
it's insufficient to only know whether the type is a reference or
pointer (that was necessary for mangling, but insufficient for debug
info). This shouldn't increase the size of TemplateArgument as
TemplateArgument::Integer is still longer by another 32 bits.
Several bits of code were testing that the reference-ness of the
parameters matched, but this seemed to be insufficient (various other
features of the type could've mismatched and wouldn't've been caught)
and unnecessary, at least insofar as removing those tests didn't cause
anything to fail.
(Richard - perchaps you can hypothesize why any of these checks might
need to test reference-ness of the parameters (& explain why
reference-ness is part of the mangling - I would've figured that for the
reference-ness to be different, a prior template argument would have to
be different). I'd be happy to add them in/beef them up and add test
cases if there's a reason for them)
llvm-svn: 219900
We build a NestedNameSpecifier that records the CXXRecordDecl in which
__super appeared. Name lookup is performed in all base classes of the
recorded CXXRecordDecl. Use of __super is allowed only inside class and
member function scope.
llvm-svn: 218484
Don't mangle all casts in expressions as "cv", use the appropriate
encoding which corresponds to a specific cast.
This fixes PR21034.
Differential Revision: http://reviews.llvm.org/D5453
llvm-svn: 218293
There are situations when clang knows that the C1 and C2 constructors
or the D1 and D2 destructors are identical. We already optimize some
of these cases, but cannot optimize it when the GlobalValue is
weak_odr.
The problem with weak_odr is that an old TU seeing the same code will
have a C1 and a C2 comdat with the corresponding symbols. We cannot
suddenly start putting the C2 symbol in the C1 comdat as we cannot
guarantee that the linker will not pick a .o with only C1 in it.
The solution implemented by GCC is to expand the ABI to have a comdat
whose name uses a C5/D5 suffix and always has both symbols. That is
what this patch implements.
llvm-svn: 217874
CXXNameMangler::mangleUnqualifiedBlock believed that
MangleContext::getBlockId returned something that used Itanium-style
discriminator numbers.
Discriminator numbers start their numberign from 1 and the first
mangling that actually gets any sort of number mangled in is the second
discriminator.
However, Block IDs start from zero. The logic for omitting the mangling
number did a ' > 1' instead of a ' > 0' comparison; this could
potentially cause mangling conflicts.
llvm-svn: 214699
The main subtlety here is that the Darwin tools still need to be given "-arch
arm64" rather than "-arch aarch64". Fortunately this already goes via a custom
function to handle weird edge-cases in other architectures, and it tested.
I removed a few arm64_be tests because that really isn't an interesting thing
to worry about. No-one using big-endian is also referring to the target as
arm64 (at least as far as toolchains go). Mostly they date from when arm64 was
a separate target and we *did* need a parallel name simply to test it at all.
Now aarch64_be is sufficient.
llvm-svn: 213744
A few (mostly CodeGen) parts of Clang were tightly coupled to the
AArch64 backend. Now that it's gone, they will not even compile.
I've also deduplicated RUN lines in many of the AArch64 tests. This
might improve "make check-all" time noticably: some of those NEON
tests were monsters.
llvm-svn: 209578
Summary:
Update our mangling to match the discussion on cxx-abi-dev.
This involves using a seq-id instead of an optional number.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3631
llvm-svn: 208140
Summary:
Previously, we would generate a single name for all reference
temporaries and allow LLVM to rename them for us. Instead, number the
reference temporaries as we build them in Sema.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3554
llvm-svn: 207776
cxx-abi-dev came up with a way to disambiguate between different
keywords used in elaborated type specifiers.
This resolves certain collisions during mangling.
llvm-svn: 205943
This adds Clang support for the ARM64 backend. There are definitely
still some rough edges, so please bring up any issues you see with
this patch.
As with the LLVM commit though, we think it'll be more useful for
merging with AArch64 from within the tree.
llvm-svn: 205100
COFF doesn't have mergeable sections so LLVM/clang's normal tactics for
string deduplication will not have any effect.
To remedy this we place each string inside it's own section and mark
the section as IMAGE_COMDAT_SELECT_ANY. However, we can only do this if the
string has an external name that we can generate from it's contents.
To be compatible with MSVC, we must use their scheme. Otherwise identical
strings in translation units from clang may not be deduplicated with
translation units in MSVC.
This fixes PR18248.
N.B. We will not attempt to do anything with a string literal which is not of
type 'char' or 'wchar_t' because their compiler does not support unicode
string literals as of this date. Further, we avoid doing this if
either -fwritable-strings or -fsanitize=address are present.
This reverts commit r204596.
llvm-svn: 204675
COFF doesn't have mergeable sections so LLVM/clang's normal tactics for
string deduplication will not have any effect.
To remedy this we place each string inside it's own section and mark
the section as IMAGE_COMDAT_SELECT_ANY. However, we can only do this if the
string has an external name that we can generate from it's contents.
To be compatible with MSVC, we must use their scheme. Otherwise identical
strings in translation units from clang may not be deduplicated with
translation units in MSVC.
This fixes PR18248.
N.B. We will not attempt to do anything with a string literal which is not of
type 'char' or 'wchar_t' because their compiler does not support unicode
string literals as of this date.
llvm-svn: 204562
Summary:
The MSVC ABI appears to mangle the lexical scope into the names of
statics. Specifically, a counter is incremented whenever a scope is
entered where things can be declared in such a way that an ambiguity can
arise. For example, a class scope inside of a class scope doesn't do
anything interesting because the nested class cannot collide with
another nested class.
There are problems with this scheme:
- It is unreliable. The counter is only incremented when a previously
never encountered scope is entered. There are cases where this will
cause ambiguity amongst declarations that have the same name where one
was introduced in a deep scope while the other was introduced right
after in the previous lexical scope.
- It is wasteful. Statements like: {{{{{{{ static int foo = a; }}}}}}}
will make the mangling of "foo" larger than it need be because the
scope counter has been incremented many times.
Because of these problems, and practical implementation concerns. We
choose not to implement this scheme if the local static or local type
isn't visible. The mangling of these declarations will look very
similar but the numbering will make far more sense, this scheme is
lifted from the Itanium ABI implementation.
Reviewers: rsmith, doug.gregor, rnk, eli.friedman, cdavis5x
Reviewed By: rnk
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2953
llvm-svn: 202951
Most 64-bit targets define int64_t as long int, and AArch64 should
make same definition to follow LP64 model. In GNU tool chain, int64_t
is defined as long int for 64-bit target. So to get consistent with GNU,
it's better Changing int64_t from 'long long int' to 'long int',
otherwise clang will get different name mangling suffix compared with g++.
llvm-svn: 202004
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
Remove UnaryTypeTraitExpr and switch all remaining type trait related handling
over to TypeTraitExpr.
The UTT/BTT/TT enum prefix and evaluation code is retained pending further
cleanup.
This is part of the ongoing work to unify type traits following the removal of
BinaryTypeTraitExpr in r197273.
llvm-svn: 198271
There's nothing special about type traits accepting two arguments.
This commit eliminates BinaryTypeTraitExpr and switches all related handling
over to TypeTraitExpr.
Also fixes a CodeGen failure with variadic type traits appearing in a
non-constant expression.
The BTT/TT prefix and evaluation code is retained as-is for now but will soon
be further cleaned up.
This is part of the ongoing work to unify type traits.
llvm-svn: 197273
The old URL hasn't worked for quite some time. While we are here, also
change the link so that it will send us straight to the mangling portion
of the ABI doc.
llvm-svn: 197195
Summary:
In general, this type node can be used to represent any type adjustment
that occurs implicitly without losing type sugar. The immediate use of
this is to adjust the calling conventions of member function pointer
types without breaking template instantiation.
Fixes PR17996.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2332
llvm-svn: 196451
Summary:
RTTI is not yet implemented for the Microsoft C++ ABI and isn't expected
soon. We could easily add the mangling, but the error is what prevents
us from silently miscompiling code that expects RTTI.
Instead, add a new mangleTypeName entry point that simply forwards to
mangleName or mangleType to produce a string that isn't part of the ABI.
Itanium can continue to use RTTI names to avoid unecessary test
breakage.
This also seems like the right design. The fact that TBAA names happen
to be RTTI names is now an implementation detail of the mangler, rather
than part of TBAA.
Differential Revision: http://llvm-reviews.chandlerc.com/D2153
llvm-svn: 195168
If the sole distinction between two declarations is that one has a
__restrict qualifier then we should not consider it to be an overload.
Instead, we will consider it as an incompatible redeclaration which is
similar to how MSVC, ICC and GCC would handle it.
This fixes PR17786.
N.B. We must not mangle in __restrict into method qualifiers becase we
don't allow overloading between such declarations anymore. To do
otherwise would be a violation of the Itanium ABI.
llvm-svn: 193964
The Itanium mangler couldn't cope with mangling an IndirectFieldDecl.
Instead, mangle the field the IndirectFieldDecl refers to.
Further, give IndirectFieldDecl no linkage just like FieldDecl.
N.B. Decl.cpp:getLVForNamespaceScopeDecl tried to calculate linkage for
data members of anonymous structs/unions. However, this seems
impossible so turn it into an assertion.
llvm-svn: 193269
This removes the dependency on the llvm mangler doing it for us. In isolation,
the benefit is that the testing of what mangling is applied is all in one place:
(C, C++) X (Itanium, Microsoft) are all handled by clang.
This also gives me hope that in the future the llvm mangler (and llvm-ar) will
not depend on TargetMachine.
llvm-svn: 192762