The load configuration directory is a structure whose size varies as the
OS gains additional functionality. To account for this, the structure's
layout begins with a size field; this allows loaders to know which
fields are available.
However, LLD hard-coded the sizes (112 bytes for 64-bit and 64 for
32-bit). This means that we might not inform the loader of all the
pertinent fields or we might claim that there are more fields than are
actually present.
To correctly account for this, the size field must be loaded from the
_load_config_used symbol.
N.B. The COFF spec is either wrong or out of date, the load
configuration directory is not correctly documented in the
specification: it omits the size field.
llvm-svn: 263543
If a section symbol is not external, that COMDAT section should never
be merge with other sections in other compilation unit. Previously,
we didn't take visibility into account.
Note that COMDAT sections with non-external visibility makes sense
because they can be removed by dead-stripping.
Fixes https://llvm.org/bugs/show_bug.cgi?id=25686
llvm-svn: 254578
There's actually a room to improve this patch. Instead of not merging
sections that have different alignements, we can choose the section that
has the largest alignment requirement among all sections that are otherwise
considered the same. Then all section alignments are satisfied, so we can
merge them.
I don't know if that improvement could make any difference for real-world
input, so I'll leave it alone. Would be interesting to revisit later.
llvm-svn: 248581
The LLD's ICF algorithm is highly parallelizable. This patch does that
using parallel_for_each.
ICF accounted for about one third of total execution time. Previously,
it took 324 ms when self-hosting. Now it takes only 62 ms.
Of course your mileage may vary. My machine is a beefy 24-core Xeon machine,
so you may not see this much speedup. But this optimization should be
effective even for 2-core machine, since I saw speedup (324 ms -> 189 ms)
when setting parallelism parameter to 2.
llvm-svn: 248038
Previously, ICF created a vector for each SectionChunk. The vector
contained pointers to successors, which are namely associative sections
and COMDAT relocation targets. The reason I created vectors is because
I thought that that would make section comparison faster.
It did make the comparison faster. When self-linking, for example, it
saved about 10 ms on each iteration. The time we spent on constructing
the vectors was 124 ms. If we iterate more than 12 times, return from
the investment exceeds the initial cost.
In reality, it usually needs 5 iterations. So we shouldn't construct
the vectors.
llvm-svn: 247963
Only live symbols are written to the symbol table. Because isLive()
returned false if dead-stripping was disabled entirely, only
non-COMDAT sections were written to the symbol table. This patch fixes
the issue.
llvm-svn: 247856
This patch defines ICF class and defines ICF-related functions as
members of the class. By doing this we can move code that are
related only to ICF from SectionChunk to the newly-defined class.
This also eliminates a global variable "NextID".
llvm-svn: 247802
This is a patch to make LLD to be on par with MSVC in terms of ICF
effectiveness. MSVC produces a 27.14MB executable when linking LLD.
LLD previously produced a 27.61MB when self-linking. Now the size
is reduced to 27.11MB. Note that without ICF the size is 29.63MB.
In r247387, I implemented an algorithm that handles section graphs
as cyclic graphs and merge them using SCC. The algorithm did not
always work as intended as I demonstrated in r247721. The new
algortihm implemented in this patch is different from the previous
one. If you are interested the details, you want to read the file
comment of ICF.cpp.
llvm-svn: 247770
Previously, LLD's ICF couldn't merge cyclic graphs. That was unfortunate
because, in COFF, cyclic graphs are not exceptional at all. That is
pretty common.
In this patch, sections are grouped by Tarjan's strongly connected
component algorithm to get acyclic graphs. And then we try to merge
SCCs whose outdegree is zero, and remove them from the graph. This
makes other SCCs to have outdegree zero, so we can repeat the
process until all SCCs are removed. When comparing two SCCs, we handle
cycles properly.
This algorithm works better than previous one. Previously, self-linking
produced a 29.0MB executable. It now produces a 27.7MB. There's still some
gap compared to MSVC linker which produces a 27.1MB executable for the
same input. So the gap is narrowed, but still LLD is not on par with MSVC.
I'll investigate that later.
llvm-svn: 247387
Identical COMDAT Folding is a feature to merge COMDAT sections
by contents. Two sections are considered the same if their contents,
relocations, attributes, etc, are all the same.
An interesting fact is that MSVC linker takes "iterations" parameter
for ICF because the algorithm they are using is iterative. Merging
two sections could make more sections to be mergeable because
different relocations could now point to the same section. ICF is
repeated until we get a convergence (until no section can be merged).
This algorithm is not fast. Usually it needs three iterations until a
convergence is obtained.
In the new algorithm implemented in this patch, we consider sections
and relocations as a directed acyclic graph, and we try to merge
sections whose outdegree is zero. Sections with outdegree zero are then
removed from the graph, which makes other sections to have outdegree
zero. We repeat that until all sections are processed. In this
algorithm, we don't iterate over the same sections many times.
There's an apparent issue in the algorithm -- the section graph is
not guaranteed to be acyclic. It's actually pretty often cyclic.
So this algorithm cannot eliminate all possible duplicates.
That's OK for now because the previous algorithm was not able to
eliminate cycles too. I'll address the issue in a follow-up patch.
llvm-svn: 246878
Previously, we calculated our own hash values for section contents.
Of coruse that's slow because we had to access all bytes in sections.
Fortunately, COFF objects usually contain hash values for COMDAT
sections. We can use that to speed up Identical COMDAT Folding.
llvm-svn: 246869
This is more convenient than the offset from the start of the file as we
don't have to worry about it changing when we move the output section.
This is a port of r245008 from ELF.
llvm-svn: 245018
I don't remember why I thought that only functions are subject
of garbage collection, but the comment here said so, which is
not correct. Moreover, the code just below the comment does not
do what the comment says -- it handles non-COMDAT, non-function
sections as GC root. As a result, it just handles non-COMDAT
sections as GC root.
This patch cleans that up by removing SectionChunk::isRoot and
use isCOMDAT instead.
llvm-svn: 243700
SECREL should sets the 32-bit offset of the target from the beginning
of *target's* output section. Previously, the offset from the beginning
of source's output section was used instead.
SECTION means the target section's index, and not the source section's
index. This patch fixes that issue too.
llvm-svn: 243535
On x64 and x86, we use only one base relocation type, so we handled
base relocations just as a list of RVAs. That doesn't work well for
ARM becuase we have to handle two types of base relocations on ARM.
This patch changes the type of base relocation from uint32_t to
{reltype, uint32_t} to make it easy to port this code to ARM.
llvm-svn: 243197
An object file compatible with Safe SEH contains a .sxdata section.
The section contains a list of symbol table indices, each of which
is an exception handler function. A safe SEH-enabled executable
contains a list of exception handler RVAs. So, what the linker has
to do to support Safe SEH is basically to read the .sxdata section,
interpret the contents as a list of symbol indices, unique-fy and
sort their RVAs, and then emit that list to .rdata. This patch
implements that feature.
llvm-svn: 243182
__ImageBase is a special symbol whose value is the image base address.
Previously, we handled __ImageBase symbol as an absolute symbol.
Absolute symbols point to specific locations in memory and the locations
never change even if an image is base-relocated. That means that we
don't have base relocation entries for absolute symbols.
This is not a case for __ImageBase. If an image is base-relocated, its
base address changes, and __ImageBase needs to be shifted as well.
So we have to have base relocations for __ImageBase. That means that
__ImageBase is not really an absolute symbol but a different kind of
symbol.
In this patch, I introduced a new type of symbol -- DefinedRelative.
DefinedRelative is similar to DefinedAbsolute, but it has not a VA but RVA
and is a subject of base relocation. Currently only __ImageBase is of
the new symbol type.
llvm-svn: 243176
Because thunks for dllimported symbols contain absolute addresses on x86,
they need to be relocated at load-time. This bug was a cause of crashes
in DLL initialization routines.
llvm-svn: 242259
Previously, pointers pointed by locally-imported symbols were broken.
It has only 4 bytes although the correct size is 8 byte. This patch
fixes that bug.
llvm-svn: 241295
This flattens the entire liveness walk from a recursive mark approach to
a worklist approach. It also sinks the worklist management completely
out of the SectionChunk and into the Writer by exposing the ability to
iterato over children of a chunk and over the symbol bodies of relocated
symbols. I'm not 100% happy with the API names, so suggestions welcome
there.
This allows us to use a single worklist for the entire recursive walk
and would also be a natural place to take advantage of parallelism at
some future point.
With this, we completely inline away the GC walk into the
Writer::markLive function and it makes it very easy to profile what is
slow. Currently, time is being wasted checking whether a Chunk isa
SectionChunk (it essentially always is), finding (or skipping)
a replacement for a symbol, and chasing pointers between symbols and
their chunks. There are a bunch of things we can do to fix this, and its
easier to do them after this change IMO.
This change alone saves 1-2% of the time for my self-link of lld.exe
(which I'm running and benchmarking on Linux ironically).
Perhaps more notably, we'll no longer blow out the stack for large
links. =]
Just as an FYI, at this point, I/O is starting to really dominate the
profile. Well over 10% of the time appears to be inside the kernel doing
page table silliness. I think a decent chunk of this can be nuked as
well, but it's a little odd as cross-linking in this way isn't really
the primary goal here.
Differential Revision: http://reviews.llvm.org/D10790
llvm-svn: 240995
When comparing two COMDAT sections, we need to take section values
and associative sections into account. This patch fixes that bug.
It fixes a crash bug of llvm-tblgen when linked with /opt:lldicf.
One thing I don't understand yet is that this logic seems to be
too strict. MSVC linker is able to create more compact executables
(which of course work correctly). With this ICF algorithm, LLD is
able to make executable smaller, but the outputs are larger than
MSVC's. There must be something I'm missing here.
llvm-svn: 240897
I split them in r240319 because I thought they are different enough
that we should treat them as different types. It turned out that
that was not a good idea. They are so similar that we ended up having
many duplicate code.
llvm-svn: 240706
Only SectionChunk can be dead-stripped. Previously,
all types of chunks implemented these functions,
but their functions were blank.
Likewise, only DefinedRegular and DefinedCOMDAT symbols
can be dead-stripped. markLive() function was implemented
for other symbol types, but they were blank.
I started thinking that the change I made in r240319 was
a mistake. I separated DefinedCOMDAT from DefinedRegular
because I thought that would make the code cleaner, but now
we want to handle them as the same type here. Maybe we
should roll it back.
This change should improve readability a bit as this removes
some dubious uses of reinterpret_cast. Previously, we
assumed that all COMDAT chunks are actually SectionChunks,
which was not very obvious.
llvm-svn: 240675
The change I made in r240620 was not correct. If a symbol foo is
defined, and if you use __imp_foo, __imp_foo symbol is automatically
defined as a pointer (not just an alias) to foo.
Now that we need to create a chunk for automatically-created symbols.
I defined LocalImportChunk class for them.
llvm-svn: 240622
Getting an iterator to the relocation table is very hot operation
in the linker. We do that not only to apply relocations but also
to mark live sections and to do ICF.
libObject's interface is slow. By caching pointers to the first
relocation table entries makes the linker 6% faster to self-link.
We probably need to fix libObject as well.
llvm-svn: 240603
Identical COMDAT Folding (ICF) is an optimization to reduce binary
size by merging COMDAT sections that contain the same metadata,
actual data and relocations. MSVC link.exe and many other linkers
have this feature. LLD achieves on per with MSVC in terms produced
binary size with this patch.
This technique is pretty effective. For example, LLD's size is
reduced from 64MB to 54MB by enaling this optimization.
The algorithm implemented in this patch is extremely inefficient.
It puts all COMDAT sections into a set to identify duplicates.
Time to self-link with/without ICF are 3.3 and 320 seconds,
respectively. So this option roughly makes LLD 100x slower.
But it's okay as I wanted to achieve correctness first.
LLD is still able to link itself with this optimization.
I'm going to make it more efficient in followup patches.
Note that this optimization is *not* entirely safe. C/C++ require
different functions have different addresses. If your program
relies on that property, your program wouldn't work with ICF.
However, it's not going to be an issue on Windows because MSVC
link.exe turns ICF on by default. As long as your program works
with default settings (or not passing /opt:noicf), your program
would work with LLD too.
llvm-svn: 240519
Chunks are basically unnamed chunks of bytes, and we don't like
to give them names. However, for logging or debugging, we want to
know symbols names of functions for COMDAT chunks. (For example,
we want to print out "we have removed unreferenced COMDAT section
which contains a function FOOBAR.")
This patch is to do that.
llvm-svn: 240484
PE/COFF executables/DLLs usually contain data which is called
base relocations. Base relocations are a list of addresses that
need to be fixed by the loader if load-time relocation is needed.
Base relocations are in .reloc section.
We emit one base relocation entry for each IMAGE_REL_AMD64_ADDR64
relocation.
In order to save disk space, base relocations are grouped by page.
Each group is called a block. A block starts with a 32-bit page
address followed by 16-bit offsets in the page. That is more
efficient representation of addresses than just an array of 32-bit
addresses.
llvm-svn: 239710
isRoot, isLive and markLive functions are called very frequently.
Previously, they were virtual functions. This patch make them
non-virtual.
Also this patch checks chunk liveness before calling its mark().
Previously, we did that at beginning of markLive(), so the virtual
function would return immediately if it's live. That was inefficient.
llvm-svn: 239458