This is done by finding the types that are forward declarations that come from a module, and loading that module's debug info in a separate lldb_private::Module, and copying the type over into the current module using a ClangASTImporter object. ClangASTImporter objects are already used to copy types from on clang::ASTContext to another for expressions so the type copying code has been around for a while.
A new FindTypes variant was added to SymbolVendor and SymbolFile:
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
The CompilerContext is a way to represent the exact context of a type and pass it through an agnostic API boundary so that we can find that exact context elsewhere in another file. This was required here because we can have a module that has submodules, both of which have a "foo" type.
I am not able to add tests for this yet as we currently don't build our C/C++/ObjC binaries with the clang binary that we build. There are some driver issues where it can't find the header files for the C and C++ standard library which makes compiling these tests hard. We can't also guarantee that if we are building with clang that it supporst the exact format of -gmodule debugging that we are trying to test. We have had other versions of clang that had a different implementation of -gmodule debugging that we are no longer supporting, so we can't enable tests if we are building with clang without compiling something and looking at the structure of the DWARF that was generated to ensure that it is the format we can actually use.
llvm-svn: 254476
A very expected layout: source tree is in ~/src/llvm, the build directory is in
~/src/llvm-build, and the install location is in /usr/local/{lib,include}.
The DWARF information in /usr/local/lib/libLLVM.a for ilist.h points to
~/src/llvm-build/include/llvm/ADT/ilist.h. Now, when someone includes
"llvm/ADT/ilist.h" and links against /usr/local/lib/libLLVM.a. Disaster.
The DWARF information in libUser.so for ilist.h points to two locations: the one
in /usr/include, and the one in ~/src/llvm-build/include. LLDB gets confused.
Let's uniquify fully-qualified names and never trip on such a thing.
Differential Revision: http://reviews.llvm.org/D14549
llvm-svn: 252898
Summary:
The solution to bug 24074,rL249673 needed
to parse the function information from the Dwarf in order
to set the SymbolContext. For that, GetFunction was called
for the parent in GetTypeForDIE, which parses the
ChildParameters and in the flow, GetTypeForDIE was called
for one of the sibling die and so an infinite
loop was triggered by calling GetFunction repeatedly for the
same function.
The changes in this revision modify the GetTypeForDIE to only
resolve the function context in the Type Lookup flow and so
prevent the infinite loop.
A testcase has also been added to check for regression in the
future and a test vector had been added to the testcase of
24074.
Reviewers: jingham, tberghammer, clayborg
Differential Revision: http://reviews.llvm.org/D14202
llvm-svn: 251917
Also since we always read in the DWARF data or mmap it, we don't need to make a copy of the strings for the directories and file names, we can just store "cosnt char *" values. Every place that uses the prologues use them temporarily and then throw them away so no one is expecting the directory and filename strings to live longer than the parse functions.
llvm-svn: 251310
Re-commit the change after fixing a lot of race condition in LLDB
exposed by this change
Loading the debug info from a large application is the slowest task
LLDB do. This CL makes most of the dwarf parsing code multi-threaded.
As a result the speed of "attach; backtrace; exit;" when the inferior
is an LLDB with full debug info increased by a factor of 2.
Differential revision: http://reviews.llvm.org/D13662
llvm-svn: 251106
Revert it bacuse it introduces several race condition detected by
the build bots.
This reverts commit 5107a5ebdb7c4571a30a7098b40bf8098b678447.
llvm-svn: 250832
Loading the debug info from a large application is the slowest task
LLDB do. This CL makes most of the dwarf parsing code multi-threaded.
As a result the speed of "attach; backtrace; exit;" when the inferior
is an LLDB with full debug info increased by a factor of 2 (on my machine).
Differential revision: http://reviews.llvm.org/D13662
llvm-svn: 250821
There were a number of const qualifiers being cast away which caused warnings.
This cluttered the output hiding real errors. Silence them by explicit casting.
NFC.
llvm-svn: 250662
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
-> This patch was reverted due to segfaults in
FreeBSD and Mac, I fixed the problems for both now.
Reviewers: emaste, granata.enrico, jingham, clayborg
Differential Revision: http://reviews.llvm.org/D13290
llvm-svn: 249673
Summary: This change fixes pr24916. As associated test has been added.
Reviewers: clayborg
Subscribers: zturner, lldb-commits
Differential Revision: http://reviews.llvm.org/D13224
llvm-svn: 249629
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
Summary:
With this change DWARFASTParserClang::CompleteTypeFromDWARF returns false if
DWARFASTParserClang::ParseChildMembers returns false. Similarly, it returns
false if any base class is of an incomplete type. This helps in cases like
these:
class Foo
{
public:
std::string str;
};
...
Foo f;
If a file with the above code is compiled with a modern clang but without
the -fno-limit-debug-info (or similar) option, then the DWARF has only
a forward declration for std::string. In which case, the type for
"class Foo" cannot be completed. If LLDB does not detect that a child
member has incomplete type, then it wrongly conveys to clang (the LLDB
compiler) that "class Foo" is complete, and consequently crashes due to
an assertion failure in clang when running commands like "p f" or
"frame var f".
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13066
llvm-svn: 248401
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
Reviewers: jingham, ovyalov, spyffe, richard.mitton, clayborg
Differential Revision: http://reviews.llvm.org/D12404
llvm-svn: 248366
Summary:
This is no longer related to Clang and is just an opaque pointer
to data for a compiler type.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13039
llvm-svn: 248288
Summary:
With the recent changes to separate clang from the core structures
of LLDB, many inclusions of clang headers can be removed.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12954
llvm-svn: 248004
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
Summary: Supports the parsing of the "using namespace XXX" and "using XXX::XXX" directives. Added ambiguity errors when it two decls with the same name are encountered (see comments in TestCppNsImport). Fixes using directives being duplicated for anonymous namespaces. Fixes GetDeclForUID for specification DIEs.
Reviewers: sivachandra, chaoren, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12897
llvm-svn: 247836
Split-dwarf uses a different header format to specify the address range
for the elements of the location lists.
Differential revision: http://reviews.llvm.org/D12880
llvm-svn: 247789
Summary: SymbolFileDWARF now creates VarDecl and BlockDecl and adds them to the Decl tree. Then, in ClangExpressionDeclMap it uses the Decl tree to search for a variable. This fixes lots of variable scoping problems.
Reviewers: sivachandra, chaoren, spyffe, clayborg
Subscribers: tberghammer, jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D12658
llvm-svn: 247746
The iterator pointing to an element of a dense map was used after
the element from was removed from the map what isn't guaranteed to be
valid at that time.
llvm-svn: 247571
* Create new dwo symbol file class
* Add handling for .dwo sections
* Change indexes in SymbolFileDWARF to store compile unit offset next to
DIE offset
* Propagate queries from dwarf compile unit to the dwo compile unit
where applicable
Differential revision: http://reviews.llvm.org/D12291
llvm-svn: 247132
* Remove some unused code
* Remove usage of DWARFDebugInfoEntry::Attributes where usage isn't
reasonable
* Cleanup DWARFMappedHash with separating it to header and implementation
file and fixing the visibility of the functions
Differential revision: http://reviews.llvm.org/D12374
llvm-svn: 247131
This will keep our code cleaner and it removes the need for intrusive additions to TypeSystem like:
class TypeSystem
{
virtual ClangASTContext *
AsClangASTContext() = 0;
}
As you can now just use the llvm::dyn_cast and other casts.
llvm-svn: 247041
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
class DWARFASTParser
{
public:
virtual ~DWARFASTParser() {}
virtual lldb::TypeSP
ParseTypeFromDWARF (const lldb_private::SymbolContext& sc,
const DWARFDIE &die,
lldb_private::Log *log,
bool *type_is_new_ptr) = 0;
virtual lldb_private::Function *
ParseFunctionFromDWARF (const lldb_private::SymbolContext& sc,
const DWARFDIE &die) = 0;
virtual bool
CompleteTypeFromDWARF (const DWARFDIE &die,
lldb_private::Type *type,
lldb_private::CompilerType &clang_type) = 0;
virtual lldb_private::CompilerDeclContext
GetDeclContextForUIDFromDWARF (const DWARFDIE &die) = 0;
virtual lldb_private::CompilerDeclContext
GetDeclContextContainingUIDFromDWARF (const DWARFDIE &die) = 0;
};
We have one subclass named DWARFASTParserClang that implements all of the clang specific AST type parsing. This keeps all DWARF parsing in the DWARF plug-in. Moved all of the DWARF parsing code that was in ClangASTContext over into DWARFASTParserClang.
lldb_private::TypeSystem classes no longer have any DWARF parsing functions in them, but they can hand out a DWARFASTParser:
virtual DWARFASTParser *
GetDWARFParser ()
{
return nullptr;
}
This keeps things clean and makes for easy merging when we have different AST's for different languages.
llvm-svn: 246242
Added a new class called DWARFDIE that contains a DWARFCompileUnit and DWARFDebugInfoEntry so that these items always stay together.
There were many places where we just handed out DWARFDebugInfoEntry pointers and then use them with a compile unit that may or may not be the correct one. Clients outside of DWARFCompileUnit and DWARFDebugInfoEntry should all be dealing with DWARFDIE instances instead of playing with DWARFCompileUnit/DWARFDebugInfoEntry pairs manually.
This paves to the way for some modifications that are coming for DWO.
llvm-svn: 246100
These are 2 new value currently in experimental status used when split
debug info is enabled.
Differential revision: http://reviews.llvm.org/D12238
llvm-svn: 245931
The array is indexed by the value in the DW_FORM filed what can be
bigger then the size of the array. This CL add bound checking to avoid
buffer overflows
Differential revision: http://reviews.llvm.org/D12239
llvm-svn: 245930
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
Another step towards isolating all language/AST specific code into the files to further abstract specific implementations of parsing types for a given language.
llvm-svn: 245090
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
This is the work done by Ryan Brown from http://reviews.llvm.org/D8712 that makes a TypeSystem class and abstracts types to be able to use a type system.
All tests pass on MacOSX and passed on linux the last time this was submitted.
llvm-svn: 244679
is optimized into DWARFCompileUnit, where it should have
been. Next I'll need to call this from another section
of code for DWARF-in-.o-file behavior correctness.
llvm-svn: 243736
debugging optimized code. Adds new methods on Function/SBFunction
to query whether a given function is optimized. Adds a new
function.is-optimized format entity and changes the default
frame-format to append "[opt]" if the function was built with
optimization.
The only indication that a binary was built with optimization
that we have right now is the presence of the DW_AT_APPLE_optimized
attribute (DW_FORM_flag value 1) in the DW_TAG_compile_unit.
The absence of this flag may mean that the compile_unit was not
compiled with optimization, or it may mean that the producer
does not generate this attribute.
Currently this only works for dSYM debugging. When we create
the CompileUnit with dwarf-in-.o-file debugging we don't have
the attribute value yet so it's not set. I need to find the
flag value when we do start to read the .o file DWARF and
set the CompileUnit's status at that point - but haven't
done it yet.
I'm also going to add a mechanism for issuing warnings to users
such that they're only issued once in a debug session and
there is away for users to suppress these warnings altogether
via .lldbinit file settings. But I want to get this changeset
committed now that it's at a useful state.
<rdar://problem/19281172>
llvm-svn: 243508
Summary:
The DW_AT_name attribute of compile unit is optional.
If it is missing, try to get filename from the debug_line section.
This allows the compile unit to be useful without the filename.
Differential Revision: http://reviews.llvm.org/D11003
llvm-svn: 241679
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
Summary:
* Fix enum LanguageType values so that they can be used as indexes
into array language_names and g_languages as assumed by
LanguageRuntime::GetNameForLanguageType,
Language::SetLanguageFromCString and Language::AsCString.
* Add DWARFCompileUnit::LanguageTypeFromDWARF to convert from DWARF
DW_LANG_* values to enum LanguageType values.
Reviewed By: clayborg, abidh
Differential Revision: http://reviews.llvm.org/D10484
llvm-svn: 239963
Summary:
`IsRelativeToCurrentWorkingDirectory` was misleading, because relative paths
are sometimes appended to other directories, not just the cwd. Plus, the new
name is shorter. Also added `IsAbsolute` for completeness.
Reviewers: clayborg, ovyalov
Reviewed By: ovyalov
Subscribers: tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D10262
llvm-svn: 239419
A DW_TAG_subprogram entry can contain a reference to a
DW_AT_abstract_origin entry instead of duplicating the information
from it (e.g.: name) when the same function is inlined in some case
and not inlined in other cases.
This CL fixes name parsing for the case when the DW_TAG_subprogram
for the non inlined version contains just a reference to the
DW_AT_abstract_origin entry instead of the full information.
Differential revision: http://reviews.llvm.org/D10034
llvm-svn: 238307
In http://reviews.llvm.org/D9754 I enabled the mangled symbol name lookup
workaround used to find global and anonymous namespace symbols in linux binaries
for all platforms, however we should still only check for these symbols when
processing Linux or FreeBSD binaries where they are relevant. This patch makes
this change.
Test Plan: The tests from the original revision still pass:
TestCallCPPFunction.py
TestCallStopAndContinue.py
TestExprs.py
TestExprsChar.py
TestNamespace.py
TestOverloadedFunctions.py
TestRvalueReferences.py
TestThreadExit.py
Differential Revision: http://reviews.llvm.org/D9782
llvm-svn: 237467
all hosts.
We require a workaround to be able to locate global and anonymous namespace
functions in the dwarf symbols on linux binaries. This patch enables this code
on all platforms so that we can still find these symbols when debugging from a
different host platform.
Test Plan:
The following tests begin passing when running with a mac host to linux client:
TestCallCPPFunction.py
TestCallStopAndContinue.py
TestExprs.py
TestExprsChar.py
TestNamespace.py
TestOverloadedFunctions.py
TestRvalueReferences.py
TestThreadExit.py
Differential Revision: http://reviews.llvm.org/D9754
llvm-svn: 237270
Removed some unused variables, added some consts, changed some casts
to const_cast. I don't think any of these changes are very
controversial.
Differential Revision: http://reviews.llvm.org/D9674
llvm-svn: 237218
module-loading support for the expression parser.
- It adds support for auto-loading modules referred
to by a compile unit. These references are
currently in the form of empty translation units.
This functionality is gated by the setting
target.auto-import-clang-modules (boolean) = false
- It improves and corrects support for loading
macros from modules, currently by textually
pasting all #defines into the user's expression.
The improvements center around including only those
modules that are relevant to the current context -
hand-loaded modules and the modules that are imported
from the current compile unit.
- It adds an "opt-in" mechanism for all of this
functionality. Modules have to be explicitly
imported (via @import) or auto-loaded (by enabling
the above setting) to enable any of this
functionality.
It also adds support to the compile unit and symbol
file code to deal with empty translation units that
indicate module imports, and plumbs this through to
the CompileUnit interface.
Finally, it makes the following changes to the test
suite:
- It adds a testcase that verifies that modules are
automatically loaded when the appropriate setting
is enabled (lang/objc/modules-auto-import); and
- It modifies lanb/objc/modules-incomplete to test
the case where a module #undefs something that is
#defined in another module.
<rdar://problem/20299554>
llvm-svn: 235313
files. Before we'd give up if we found a .o that doesn't have
DWARF associated with it; now we iterate through them all.
Also made this iteration a higher-order function so that people
don't have to remember to do this right.
<rdar://problem/20261196>
llvm-svn: 233838
Summary:
This is similar to the change introduced for variable DIEs in r233098. If the
linkage names of functions are missing in the DWARF, then their fully qualified
names (similar to the name that would be got by demangling their linkage name)
is generated using the decl context.
This change fixes TestNamespace when the test case is compiled with GCC, hence
it is enabled for GCC. The test and the test case are also enhanced to cover
variadic functions.
Test Plan: dotest.py -C <clang|gcc> -p TestNamespace
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8623
llvm-svn: 233336
Since ClangASTSource::layoutRecordType() was overriding a virtual
function in the base, this was inadvertently causing a new method
to be introduced rather than an override. To fix this all method
signatures are changed back to taking DenseMaps, and the `override`
keyword is added to make sure this type of error doesn't happen
again.
To keep the original fix intact, which is that fields and bases
must be added in offset order, the ImportOffsetMap() function
now copies the DenseMap into a vector and then sorts the vector
on the value type (e.g. the offset) before iterating over the
sorted vector and inserting the items.
llvm-svn: 233099
Summary:
This commit adds this alternate route only when parsing variable dies
corresponding to global or static variables. The motivation for this is that GCC
does not emit linkage names for functions and variables declared/defined in
anonymous namespaces. Having this alternate route fixes one part of
TestNamespace which fails when the test case is compiled with GCC.
An alternate route to get fully qualified names of functions whose linkage names
are missing will be added with a followup change. With that, the other failing
part of TestNamespace will also be fixed.
Test Plan: dotest.py -C gcc -p TestNamespace
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8569
llvm-svn: 233098
Prior to this patch, we would try to synthesize class types by
iterating over a DenseMap of FieldDecls and adding each one to
a CXXRecordDecl. Since a DenseMap doesn't provide a deterministic
ordering of the elements, this would not add the fields in
FieldOffset order, but rather in some random order determined by
the memory layout of the DenseMap.
This patch fixes the issue by changing DenseMaps to vectors. The
ability to lookup a value in the DenseMap was hardly being used,
and where it is sufficient to do a vector lookup.
Differential Revision: http://reviews.llvm.org/D8512
llvm-svn: 233090
Summary:
SymbolFileDWARF was not respecting the include_inlines argument in function lookup in all code
paths. This resulted in an attempt to call an inlined function during expression evaluation,
which is impossible, and usually resulted in a segfault in the inferior. This patch makes sure
include_inlines is respected in all code paths.
Reviewers: clayborg
Subscribers: lldb-commits, sivachandra
Differential Revision: http://reviews.llvm.org/D8286
llvm-svn: 232151
When we have a debug map we have an executable with a bunch of STAB symbols and each source file has a N_SO symbol which scopes a bunch of symbols inside of it. We can use this to our advantage here when looking for the complete definition of an objective C class by looking for a symbol whose name matches the class name and whose type is eSymbolTypeObjCClass. If we find one, that symbol will be contained within a N_SO symbol. This symbol gets turned into a symbol whose type is eSymbolTypeSourceFile and that symbol will contain the eSymbolTypeObjCClass which helps us to locate the correct .o file and allows us to only look in that file.
To further accelerate things, if we are looking for the implementation, we can avoid looking at all .o files if we don't find a matching symbol because we have a debug map, which means the objective C symbol for the class can't have been stripped, so we can safely not search all remaining .o files. This will save us lots of time when trying to look for "NSObject" and any other AppKit and Foundation classes that we never have implementation definitions for.
<rdar://problem/19234225>
llvm-svn: 230562
Now we make sure to update our DWARFCompileUnit -> lldb_private::CompileUnit user data when it isn't set to ensure quick transitions between the two.
<rdar://problem/18371367>
llvm-svn: 228264
This is necessary because the byte size of an ObjC class type is not reliably statically knowable (e.g. because superclasses sit deep in frameworks that we have no debug info for)
The lack of reliable size info is a problem when trying to freeze-dry an ObjC instance (not the pointer, the pointee)
This commit lays the foundation for having language runtimes help in figuring out byte sizes, and having ClangASTType ask for runtime help
No feature change as no runtime actually implements the logic, and nowhere is an ExecutionContext passed in yet
llvm-svn: 227274
The refactor was motivated by some comments that Greg made
http://reviews.llvm.org/D6918
and also to break a dependency cascade that caused functions linking
in string->int conversion functions to pull in most of lldb
llvm-svn: 226199
This is done by adding a "Variable *" to SymbolContext and allowing SymbolFile::ResolveSymbolContext() so if an address is resolved into a symbol context, we can include the global or static variable for that address.
This means you can now find global variables that are merged globals when doing a "image lookup --verbose --address 0x1230000". Previously we would resolve a symbol and show "_MergedGlobals123 + 1234". But now we can show the global variable name.
The eSymbolContextEverything purposely does not include the new eSymbolContextVariable in its lookup since stack frame code does many lookups and we don't want it triggering the global variable lookups.
<rdar://problem/18945678>
llvm-svn: 226084
Summary:
GCC emits DW_TAG_subrange_type for static member arrays, but with no
attributes. This in turn results in wrong type/value of the array when
printing with 'target variable <array var name>'. This patch fixes this
so that the array value is printed in this format:
(<element type> []) <array var name> = {}
Earlier, the array was being interpreted to be of its element type.
Note: This does not fix anything to do with 'expr' or 'p' commands.
Those commands still error out complaining about incomplete types.
Test Plan: dotest.py -p TestStaticVariables
Reviewers: emaste, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D6799
llvm-svn: 225219
lldb::TypeSP
SymbolFileDWARF::FindDefinitionTypeForDIE (
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *die,
const lldb_private::ConstString &type_name);
This function isn't used as it has been replaced by:
lldb::TypeSP
SymbolFileDWARF::FindDefinitionTypeForDWARFDeclContext (
const DWARFDeclContext &die_decl_ctx);
I am about to change the way we resolve C/C++ class/struct/union types and want to clean up SymbolFileDWARF before I start.
llvm-svn: 223376
This was fixed by making the DWARFFormValue contain the compile unit that it needs so it can decode its form value correctly. Any form value that requires a compile unit will now assert. If any of the assertions that were added are triggered, then code that led to the extraction of the form value without properly setting the compile unit must be fixed immediately.
<rdar://problem/19035440>
llvm-svn: 222602
1. DW_FORM_strp and DW_FORM_sec_offset are 64bits for DWARF64 / 32bits for DWARF32
They are different from DW_FORM_addr, whose size is specified in .debug_info
2. Bump DWARF version support form [2,3] to [2,4] in DWARFDebugLine.cpp
3. Fix DWARFDebugLine to support DWARF64
See http://reviews.llvm.org/D5307 for more details.
Reviewed by Greg Clayton and Jason Molenda.
Change by Tong Shen.
llvm-svn: 217607
Fixes include:
- Don't say that "<arch>-apple-ios" is compatible with "<arch>-apple-macosx"
- Fixed DynamicLoaderMacOSXDYLD so specify an architecture that was converted solely from a cputype and subtype, just specify the file + UUID.
- Fixed PlatformiOSSimulator::GetSupportedArchitectureAtIndex() so it returns the correct archs
- Fixed SymbolFileDWARFDebugMap to load .o files correctly by just specifying the architecture without the vendor and OS now that "<arch>-apple-ios" is not compatible with "<arch>-apple-macosx" so we can load .o files correctly for DWARF with debug map
- Fixed the coded in TargetList::CreateTarget() so it does the right thing with an underspecified triple where just the arch is specified.
llvm-svn: 212783
This fixes a number of trivial warnings in the Windows build. This is part of a larger effort to make the Windows build warning-free.
See http://reviews.llvm.org/D3914 for more details.
Change by Zachary Turner
llvm-svn: 209749
This fix reduces the stack size of SymbolFileDWARF::ParseType(). It seems that clang is not very good at sharing locations on the stack with local variables in large functions that have many blocks and each variable gets unique locations. The reduction in size was done by:
1 - removing some large locals that were default constructed by not used
2 - Placing some larger local variables into std::unique_ptr<> to make them on the heap
3 - removing local variables there were large and being populated but not being used
4 - reducing the size of some typedefs to llvm::SmallVector<T, N> so that N wasn’t excessively large
<rdar://problem/16431645>
llvm-svn: 205640
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
This is a mechanical change addressing the various sign comparison warnings that
are identified by both clang and gcc. This helps cleanup some of the warning
spew that occurs during builds.
llvm-svn: 205390
(lldb) b puts
(lldb) expr -g -i0 -- (int)puts("hello")
First we will stop at the entry point of the expression before it runs, then we can step over a few times and hit the breakpoint in "puts", then we can continue and finishing stepping and fininsh the expression.
Main features:
- New ObjectFileJIT class that can be easily created for JIT functions
- debug info can now be enabled when parsing expressions
- source for any function that is run throught the JIT is now saved in LLDB process specific temp directory and cleaned up on exit
- "expr -g --" allows you to single step through your expression function with source code
<rdar://problem/16382881>
llvm-svn: 204682
This is a mechanical cleanup of unused functions. In the case where the
functions are referenced (in comment form), I've simply commented out the
functions. A second pass to clean that up is warranted.
The functions which are otherwise unused have been removed. Some of these were
introduced in the initial commit and not in use prior to that point!
NFC
llvm-svn: 204310