The static_assert in "libcxx/include/memory" was the main offender here,
but then I figured I might as well `git grep -i instantat` and fix all
the instances I found. One was in user-facing HTML documentation;
the rest were in comments or tests.
This gives us slightly nicer syntax (foreach) for idioms currently expressed
as a loop, and the option to use range algorithms where it makes sense
(e.g. llvm::all_of et al encapsulate the needed flow control in a useful way).
It's also a building block for iteration over filtered views (e.g. iterate over
all Stmt children, with the right type):
for (const Statement &S : filter<Statement>(N.children()))
...
I realize the recent direction has been mostly towards strongly-typed
node-specific facilities, but I think it's important we have convenient
generic facilities too.
Differential Revision: https://reviews.llvm.org/D90023
After this change all nodes that have a delimited-list are using the
`List` API.
Implementation details:
Let's look at a declaration with multiple declarators:
`int a, b;`
To generate a declarator list node we need to have the range of
declarators: `a, b`:
However, the `ClangAST` actually stores them as separate declarations:
`int a ;`
`int b;`
We solve that by appropriately marking the declarators on each separate
declaration in the `ClangAST` and then for the final declarator `int
b`, shrinking its range to fit to the already marked declarators.
Differential Revision: https://reviews.llvm.org/D88403
There can be Macros that are tagged with `modifiable`. Thus verifying
`canModifyAllDescendants` is not sufficient to avoid macros when deep
copying.
We think the `TokenBuffer` could inform us whether a `Token` comes from
a macro. We'll look into that when we can surface this information
easily, for instance in unit tests for `ComputeReplacements`.
Differential Revision: https://reviews.llvm.org/D88034
* Introduce `TreeTest.cpp` to unit test `Tree.h`
* Add `generateAllTreesWithShape` to generating test cases
* Add tests for `findFirstLeaf` and `findLastLeaf`
* Fix implementations of `findFirstLeaf` and `findLastLeaf` that had
been broken when empty `Tree` were present.
Differential Revision: https://reviews.llvm.org/D87779
In a future patch
* Implement helper function to generate Trees for tests
* and test Tree methods, namely `findFirstLeaf` and `findLastLeaf`
Differential Revision: https://reviews.llvm.org/D87533
* Do not visit `CXXDefaultArgExpr`
* To build `CallArguments` nodes, just go through non-default arguments
Differential Revision: https://reviews.llvm.org/D87249
Previously a NodeRole would generally be prefixed with the `NodeKind`,
we remove this prefix, as it we redundant and made tests more noisy.
Differential Revision: https://reviews.llvm.org/D86636
* Generate `CallExpression` syntax node for all semantic nodes inheriting from
`CallExpr` with call-expression syntax - except `CUDAKernelCallExpr`.
* Implement all the accessors
* Arguments of `CallExpression` have their own syntax node which is based on
the `List` base API
Differential Revision: https://reviews.llvm.org/D86544
We should see `NodeRole` information in the dump because that exposes how the
accessors will behave.
Functional changes in the dump:
* Surround Leaf tokens with `'`
* Append `Node` dumps with `NodeRole` information, except for unknown roles
* Append marks to `Node` dumps, instead of prepending
Non-functional changes:
* `::dumpTokens(llvm::raw_ostream, ArrayRef<syntax::Token>, const
SourceManager &SM)` always received as parameter a `syntax::Token *`
pointing to `Leaf::token()`. Changed the function to
`dumpLeaf(llvm::raw_ostream, syntax::Leaf *, const SourceManager&)`
* `dumpTree` acted on a Node, rename to `dumpNode`
Differential Revision: https://reviews.llvm.org/D85330
In this process we also create some other tests, in order to not lose
coverage when focusing on the annotated code
Differential Revision: https://reviews.llvm.org/D85962
We add the method `SyntaxTreeTest::treeDumpEqualOnAnnotations`, which
allows us to compare the treeDump of only annotated code. This will reduce a
lot of noise from our `BuildTreeTest` and make them short and easier to
read.
We do that because:
* Big tests generated big tree dumps that could hardly serve as documentation.
* In most cases the tests didn't share setup, thus there was not much addition in lines of code.
We split tests for:
* `UserDefinedLiteral`
* `NestedBinaryOperator`
* `UserDefinedBinaryOperator`
* `UserDefinedPrefixOperator`
* `QualifiedId`
Differential Revision: https://reviews.llvm.org/D85819