Update the ASTNodeTraverser to dump only nodes spelled in source. There
are only a few which need to be handled, but Decl nodes for which
isImplicit() is true are handled together.
Update the RAV instances used in ASTMatchFinder to ignore the nodes too.
As with handling of template instantiations, it is necessary to allow
the RAV to process the implicit nodes because they need to be visitable
before the first traverse() matcher is encountered. An exception to
this is in the MatchChildASTVisitor, because we sometimes wish to make a
node matchable but make its children not-matchable. This is the case
for defaulted CXXMethodDecls for example.
Extend TransformerTests to illustrate the kinds of problems that can
arise when performing source code rewriting due to matching implicit
nodes.
This change accounts for handling nodes not spelled in source when using
direct matching of nodes, and when using the has() and hasDescendant()
matchers. Other matchers such as
cxxRecordDecl(hasMethod(cxxMethodDecl())) still succeed for
compiler-generated methods for example after this change. Updating the
implementations of hasMethod() and other matchers is for a follow-up
patch.
Differential Revision: https://reviews.llvm.org/D90982
Continue to dump and match on explicit template specializations, but
omit explicit instantiation declarations and definitions.
Differential Revision: https://reviews.llvm.org/D90763
Summary:
IgnoreUnlessSpelledInSource mode should ignore these because they are
not written in the source. This matters for example when trying to
replace types or values which are templated. The new test in
TransformerTest.cpp in this commit demonstrates the problem.
In existing matcher code, users can write
`unless(isInTemplateInstantiation())` or `unless(isInstantiated())` (the
user must know which to use). The point of the
TK_IgnoreUnlessSpelledInSource mode is to allow the novice to avoid such
details. This patch changes the IgnoreUnlessSpelledInSource mode to
skip over implicit template instantiations.
This patch does not change the TK_AsIs mode.
Note: An obvious attempt at an alternative implementation would simply
change the shouldVisitTemplateInstantiations() in ASTMatchFinder.cpp to
return something conditional on the operational TraversalKind. That
does not work because shouldVisitTemplateInstantiations() is called
before a possible top-level traverse() matcher changes the operational
TraversalKind.
Reviewers: sammccall, aaron.ballman, gribozavr2, ymandel, klimek
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80961
Summary:
Skip over elidable nodes, and ensure that intermediate
CXXFunctionalCastExpr nodes are also skipped if they are semantic.
Reviewers: klimek, ymandel
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82278
outer levels as retained rather than omitting their arguments.
This better reflects what's going on (we're performing a substitution
while still inside a template), and in theory is more correct, but I've
not found a testcase where it matters in practice (largely because we
don't allow alias templates to be declared inside a function).
Fixed AST dumping of SubstNonTypeTemplateParm[Pack]Expr to demonstrate
that we're properly substituting through dependent alias templates. (We
can't deduce properly through these yet, but we can at least produce the
right input to template argument deduction.)
No functionality change intended.
DynTypedNode and ASTNodeKind are implemented as part of the clang AST
library, which uses the main clang namespace. There doesn't seem to be a
need for this extra level of namespacing.
I left behind aliases in the ast_type_traits namespace for out of tree
clients of these APIs. To provide aliases for the enumerators, I used
this pattern:
namespace ast_type_traits {
constexpr TraversalKind TK_AsIs = ::clang::TK_AsIs;
}
I think the typedefs will be useful for migration, but we might be able
to drop these enumerator aliases.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D74499