Commit Graph

171 Commits

Author SHA1 Message Date
Davide Italiano 0dc4778067 [EarlyCSE] Make PhiToCheck in removeMSSA() a set.
This way we end up not looking at PHI args already removed.
MemSSA now goes through the updater so we can prune
it to avoid having redundant MemoryPHI arguments, but that
doesn't quite work for the general case.

Discussed with Daniel Berlin, fixes PR33406.

llvm-svn: 305409
2017-06-14 19:29:53 +00:00
Craig Topper 48187cffe2 [Statistics] Use Statistic::operator+= instead of adding and assigning separately.
I believe this technically fixes a multithreaded race condition in this code. But my primary concern was as part of looking at removing the ability to treat Statistics like a plain unsigned. There are many weird operations on Statistics in the codebase.

llvm-svn: 303314
2017-05-17 23:22:10 +00:00
Daniel Berlin 4d0fe64ae3 Kill off the old SimplifyInstruction API by converting remaining users.
llvm-svn: 301673
2017-04-28 19:55:38 +00:00
Max Kazantsev 531db9a504 [EarlyCSE] Mark the condition of assume intrinsic as true
EarlyCSE should not just ignore assumes. It should use the fact that its condition is true for all dominated instructions.

Reviewers: sanjoy, reames, apilipenko, anna, skatkov

Reviewed By: reames, sanjoy

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D32482

llvm-svn: 301625
2017-04-28 06:25:39 +00:00
Max Kazantsev 0589d9fa0f [EarlyCSE] Remove guards with conditions known to be true
If a condition is calculated only once, and there are multiple guards on this condition, we should be able
to remove all guards dominated by the first of them. This patch allows EarlyCSE to try to find the condition
of a guard among the known values, and if it is true, remove the guard. Otherwise we keep the guard and
mark its condition as 'true' for future consideration.

Reviewers: sanjoy, reames, apilipenko, skatkov, anna, dberlin

Reviewed By: reames, sanjoy

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D32476

llvm-svn: 301623
2017-04-28 06:05:48 +00:00
Daniel Berlin 554dcd8c89 MemorySSA: Move to Analysis, from Transforms/Utils. It's used as
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.

llvm-svn: 299980
2017-04-11 20:06:36 +00:00
Matt Arsenault 18bb24a1be TTI: Split IsSimple in MemIntrinsicInfo
All this did before was assert in EarlyCSE.

llvm-svn: 298724
2017-03-24 18:56:43 +00:00
Sanjay Patel f1e1fba1b0 [EarlyCSE] reduce indent; NFCI
llvm-svn: 297886
2017-03-15 20:25:05 +00:00
Daniel Berlin 17e8d0eae2 Move updating functions to MemorySSAUpdater.
Add updater to passes that now need it.
Move around code in MemorySSA to expose needed functions.

Summary: Mostly cleanup

Reviewers: george.burgess.iv

Subscribers: llvm-commits, Prazek

Differential Revision: https://reviews.llvm.org/D30221

llvm-svn: 295887
2017-02-22 22:19:55 +00:00
Sanjoy Das 6de072a712 [EarlyCSE] Don't DSE across readnone functions that may throw
Summary: Depends on D28740

Reviewers: dberlin, chandlerc, hfinkel, majnemer

Subscribers: mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D28741

llvm-svn: 292249
2017-01-17 20:15:47 +00:00
Chandler Carruth ca68a3ec47 [PM] Introduce an analysis set used to preserve all analyses over
a function's CFG when that CFG is unchanged.

This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.

I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.

Differential Revision: https://reviews.llvm.org/D28627

llvm-svn: 292054
2017-01-15 06:32:49 +00:00
Sanjay Patel 1c9867d009 [EarlyCSE] less else, more auto; NFC
llvm-svn: 290848
2017-01-03 00:16:24 +00:00
Daniel Jasper aec2fa352f Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Hal Finkel 3ca4a6bcf1 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Geoff Berry 91e9a5cc23 [EarlyCSE] Make MemorySSA memory dependency check more aggressive.
Now that MemorySSA keeps track of whether MemoryUses are optimized, use
getClobberingMemoryAccess() to check MemoryUse memory dependencies since
it should no longer be so expensive.

This is a follow-up change to https://reviews.llvm.org/D25881

llvm-svn: 285080
2016-10-25 16:18:47 +00:00
Geoff Berry 6815468768 [EarlyCSE] Optimize MemoryPhis and reduce memory clobber queries w/ MemorySSA
Summary:
When using MemorySSA, re-optimize MemoryPhis when removing a store since
this may create MemoryPhis with all identical arguments.

Also, when using MemorySSA to check if two MemoryUses are reading from
the same version of the heap, use the defining access instead of calling
getClobberingAccess, since the latter can currently result in many more
AA calls.  Once the MemorySSA use optimization tracking changes are
done, we can remove this limitation, which should result in more loads
being CSE'd.

Reviewers: dberlin

Subscribers: mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D25881

llvm-svn: 284984
2016-10-24 15:54:00 +00:00
Nick Lewycky edd0a7023f Fix typo in comment, NFC
llvm-svn: 280774
2016-09-07 01:49:41 +00:00
Geoff Berry 8d84605f25 [EarlyCSE] Optionally use MemorySSA. NFC.
Summary:
Use MemorySSA, if requested, to do less conservative memory dependency
checking.

This change doesn't enable the MemorySSA enhanced EarlyCSE in the
default pipelines, so should be NFC.

Reviewers: dberlin, sanjoy, reames, majnemer

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D19821

llvm-svn: 280279
2016-08-31 19:24:10 +00:00
Geoff Berry 64f5ed172a [EarlyCSE] Allow forwarding a non-invariant load into an invariant load.
Reviewers: sanjoy

Subscribers: mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D23935

llvm-svn: 280265
2016-08-31 17:45:31 +00:00
Anna Thomas b2d12b81c3 [EarlyCSE] Teach about CSE'ing over invariant.start intrinsics
Summary:
Teach EarlyCSE about invariant.start intrinsic. Specifically, we can perform
store-load, load-load forwarding over this call.

Reviewers: majnemer, reames, dberlin, sanjoy

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D23268

llvm-svn: 278153
2016-08-09 20:00:47 +00:00
Sean Silva 36e0d01e13 Consistently use FunctionAnalysisManager
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278077
2016-08-09 00:28:15 +00:00
David Majnemer 130b9f99d6 [EarlyCSE] Correctly handle simplified, but live, instructions
Some instructions may have their uses replaced with a symbolic constant.
However, the instruction may still have side effects which percludes it
from being removed from the function.  EarlyCSE treated such an
instruction as if it were removed, resulting in PR28763.

llvm-svn: 277114
2016-07-29 05:39:21 +00:00
David Majnemer b8da3a2bb2 Reinstate r273711
r273711 was reverted by r273743.  The inliner needs to know about any
call sites in the inlined function.  These were obscured if we replaced
a call to undef with an undef but kept the call around.

This fixes PR28298.

llvm-svn: 273753
2016-06-25 00:04:10 +00:00
Nico Weber ae2ef4ccd4 Revert r273711, it caused PR28298.
llvm-svn: 273743
2016-06-24 22:52:39 +00:00
David Majnemer 3b3e954ea2 SimplifyInstruction does not imply DCE
We cannot remove an instruction with no uses just because
SimplifyInstruction succeeds.  It may have side effects.

llvm-svn: 273711
2016-06-24 19:34:46 +00:00
Sanjoy Das 1ab2fad363 [EarlyCSE] Minor cosmetic NFC changes
- Avoid implicit conversion from pointer to bool
 - Add a comment when passing in a boolean value

llvm-svn: 272955
2016-06-16 21:00:57 +00:00
Sanjoy Das 07c6521aed [EarlyCSE] Fold invariant loads
Redundant invariant loads can be CSE'ed with very little extra effort
over what early-cse already tracks, so it looks reasonable to make
early-cse handle this case.

llvm-svn: 272954
2016-06-16 20:47:57 +00:00
Davide Italiano 02861d8695 [PM] Add missing caching of GlobalsAA to EarlyCSE.
llvm-svn: 272204
2016-06-08 21:31:55 +00:00
Geoff Berry 2f64c20284 [EarlyCSE] Change key type of AvailableCalls to Instruction*. NFCI.
llvm-svn: 269445
2016-05-13 17:54:58 +00:00
Philip Reames 32b55181fa [EarlyCSE] Rename a variable for clarity [NFC]
llvm-svn: 268701
2016-05-06 01:13:58 +00:00
Sanjoy Das 107aefc2fc Mark guards on true as "trivially dead"
This moves some logic added to EarlyCSE in rL268120 into
`llvm::isInstructionTriviallyDead`.  Adds a test case for DCE to
demonstrate that passes other than EarlyCSE can now pick up on the new
information.

llvm-svn: 268126
2016-04-29 22:23:16 +00:00
Sanjoy Das ee81b23fe7 [EarlyCSE] Simplify guard intrinsics
Summary:
This change teaches EarlyCSE some basic properties of guard intrinsics:

 - Guard intrinsics read all memory, but don't write to any memory
 - After a guard has executed, the condition it was guarding on can be
   assumed to be true
 - Guard intrinsics on a constant `true` are no-ops

Reviewers: reames, hfinkel

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D19578

llvm-svn: 268120
2016-04-29 21:52:58 +00:00
Geoff Berry 5ae272c2c1 [EarlyCSE] Change LoadValue field Value *Data to Instruction *Inst. NFC.
Made in preparation for adding MemorySSA support to EarlyCSE.

llvm-svn: 267893
2016-04-28 15:22:37 +00:00
Geoff Berry 354fac2a69 [EarlyCSE] Sort includes. NFC.
Reviewers: mcrosier

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D19617

llvm-svn: 267890
2016-04-28 14:59:27 +00:00
Sanjoy Das 5253a089ba Fix typo in comment; NFC
llvm-svn: 267653
2016-04-27 01:44:31 +00:00
Andrew Kaylor aa641a5171 Re-commit optimization bisect support (r267022) without new pass manager support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267231
2016-04-22 22:06:11 +00:00
Chad Rosier 1a4bc110f5 [EarlyCSE/CVP] Add stats for CVPs and make sure to account for any Changes.
llvm-svn: 267187
2016-04-22 18:47:21 +00:00
David Majnemer bfd695d591 [EarlyCSE] Don't add the overflow flags to the hash
We take the intersection of overflow flags while CSE'ing.
This permits us to consider two instructions with different overflow
behavior to be replaceable.

llvm-svn: 267153
2016-04-22 14:12:50 +00:00
Vedant Kumar 6013f45f92 Revert "Initial implementation of optimization bisect support."
This reverts commit r267022, due to an ASan failure:

  http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549

llvm-svn: 267115
2016-04-22 06:51:37 +00:00
David Majnemer 9554c1339c [EarlyCSE] Take the intersection of flags on instructions
EarlyCSE had inconsistent behavior with regards to flag'd instructions:
- In some cases, it would pessimize if the available instruction had
  different flags by not performing CSE.
- In other cases, it would miscompile if it replaced an instruction
  which had no flags with an instruction which has flags.

Fix this by being more consistent with our flag handling by utilizing
andIRFlags.

llvm-svn: 267111
2016-04-22 06:37:45 +00:00
Andrew Kaylor f0f279291c Initial implementation of optimization bisect support.
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.

The bisection is enabled using a new command line option (-opt-bisect-limit).  Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit.  A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.

The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check.  Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute.  A new function call has been added for module and SCC passes that behaves in a similar way.

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267022
2016-04-21 17:58:54 +00:00
Chad Rosier b346dcbc25 Typo.
llvm-svn: 266905
2016-04-20 19:16:23 +00:00
JF Bastien 800f87a871 NFC: make AtomicOrdering an enum class
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.

The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).

This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.

As a follow-up I'll add:
  bool operator<(AtomicOrdering, AtomicOrdering) = delete;
  bool operator>(AtomicOrdering, AtomicOrdering) = delete;
  bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
  bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.

Reviewers: jyknight, reames

Subscribers: jyknight, llvm-commits

Differential Revision: http://reviews.llvm.org/D18775

llvm-svn: 265602
2016-04-06 21:19:33 +00:00
Chandler Carruth b47f8010a9 [PM] Make the AnalysisManager parameter to run methods a reference.
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.

In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.

llvm-svn: 263219
2016-03-11 11:05:24 +00:00
Junmo Park 80440eb804 Minor code cleanup. NFC.
llvm-svn: 261200
2016-02-18 10:09:20 +00:00
Philip Reames 15145fb7b1 [EarlyCSE] DSE of atomic unordered stores
The rules for removing trivially dead stores are a lot less complicated than loads. Since we know the later store post dominates the former and the former dominates the later, unless the former has side effects other than the actual store, we can remove it. One slightly surprising thing is that we can freely remove atomic stores, even if the later one isn't atomic. There's no guarantee the atomic one was every visible.

For the moment, we don't handle DSE of ordered atomic stores. We could extend the same chain of reasoning to them, but the catch is we'd then have to model the ordering effect without a store instruction. Since our fences are a stronger than our operation orderings, simple using a fence isn't an obvious win. This arguable calls for a refinement in our fence specification, but that's (much) later work.

Differential Revision: http://reviews.llvm.org/D15352

llvm-svn: 255914
2015-12-17 18:50:50 +00:00
Philip Reames ae1f265bf1 [EarlyCSE] DSE of stores which write back loaded values
Extend EarlyCSE with an additional style of dead store elimination. If we write back a value just read from that memory location, we can eliminate the store under the assumption that the value hasn't changed.

I'm implementing this mostly because I noticed the omission when looking at the code. It seemed strange to have InstCombine have a peephole which was more powerful than EarlyCSE. :)

Differential Revision: http://reviews.llvm.org/D15397

llvm-svn: 255739
2015-12-16 01:01:30 +00:00
JF Bastien 9938425b31 EarlyCSE: fix typo from rL255054.
llvm-svn: 255102
2015-12-09 09:05:42 +00:00
Philip Reames 8fc2cbf933 [EarlyCSE] Value forwarding for unordered atomics
This patch teaches the fully redundant load part of EarlyCSE how to forward from atomic and volatile loads and stores, and how to eliminate unordered atomics (only). This patch does not include dead store elimination support for unordered atomics, that will follow in the near future.

The basic idea is that we allow all loads and stores to be tracked by the AvailableLoad table. We store a bit in the table which tracks whether load/store was atomic, and then only replace atomic loads with ones which were also atomic.

No attempt is made to refine our handling of ordered loads or stores. Those are still treated as full fences. We could pretty easily extend the release fence handling to release stores, but that should be a separate patch.

Differential Revision: http://reviews.llvm.org/D15337

llvm-svn: 255054
2015-12-08 21:45:41 +00:00
Philip Reames 9e5e2d61bf Reapply 254950 w/fix
254950 ended up being not NFC.  The previous code was overriding the flags for whether an instruction read or wrote memory using the target specific flags returned via TTI.  I'd missed this in my refactoring.  Since I mistakenly built only x86 and didn't notice the number of unsupported tests, I didn't catch that before the original checkin.

This raises an interesting issue though.  Given we have function attributes (i.e. readonly, readnone, argmemonly) which describe the aliasing of intrinsics, why does TTI have this information overriding the instruction definition at all?  I see no reason for this, but decided to preserve existing behavior for the moment.  The root issue might be that we don't have a "writeonly" attribute.

Original commit message:
[EarlyCSE] Simplify and invert ParseMemoryInst [NFCI]

Restructure ParseMemoryInst - which was introduced to abstract over target specific load and stores instructions - to just query the underlying instructions. In theory, this could be slightly slower than caching the results, but in practice, it's very unlikely to be measurable.

The simple query scheme makes it far easier to understand, and much easier to extend with new queries. Given I'm about to need to add new query types, doing the cleanup first seemed worthwhile.

Do we still believe the target specific intrinsic handling is worthwhile in EarlyCSE? It adds quite a bit of complexity and makes the code harder to read. Being able to delete the abstraction entirely would be wonderful.

llvm-svn: 254957
2015-12-07 22:41:23 +00:00
Philip Reames 4b5634af44 Revert 254950
It's causing test failures on AArch64.  Due to a bad build config on my part, I apparently wasn't running the tests I thought I was.

llvm-svn: 254954
2015-12-07 21:41:29 +00:00
Philip Reames 998cae653b [EarlyCSE] Simplify and invert ParseMemoryInst [NFCI]
Restructure ParseMemoryInst - which was introduced to abstract over target specific load and stores instructions - to just query the underlying instructions. In theory, this could be slightly slower than caching the results, but in practice, it's very unlikely to be measurable.

The simple query scheme makes it far easier to understand, and much easier to extend with new queries. Given I'm about to need to add new query types, doing the cleanup first seemed worthwhile.

Do we still believe the target specific intrinsic handling is worthwhile in EarlyCSE? It adds quite a bit of complexity and makes the code harder to read. Being able to delete the abstraction entirely would be wonderful.

llvm-svn: 254950
2015-12-07 21:27:15 +00:00
Philip Reames 7c6692de16 [EarlyCSE] IsSimple vs IsVolatile naming clarification (NFC)
When the notion of target specific memory intrinsics was introduced to EarlyCSE, the commit confused the notions of volatile and simple memory access.  Since I'm about to start working on this area, cleanup the naming so that patches aren't horribly confusing.  Note that the actual implementation was always bailing if the load or store wasn't simple.  

Reminder:
- "volatile" - C++ volatile, can't remove any memory operations, but in principal unordered
- "ordered" - imposes ordering constraints on other nearby memory operations
- "atomic" - can't be split or sheared.  In LLVM terms, all "ordered" operations are also atomic so the predicate "isAtomic" is often used.
- "simple" - a load which is none of the above.  These are normal loads and what most of the optimizer works with.

llvm-svn: 254805
2015-12-05 00:18:33 +00:00
Benjamin Kramer 6db3338cb1 [ScalarOpts] Remove dead code.
Does not touch debug dumpers. NFC.

llvm-svn: 250417
2015-10-15 15:08:58 +00:00
Duncan P. N. Exon Smith 3a9c9e3dcd Scalar: Remove some implicit ilist iterator conversions, NFC
Remove some of the implicit ilist iterator conversions in
LLVMScalarOpts.  More to go.

llvm-svn: 250197
2015-10-13 18:26:00 +00:00
Arnaud A. de Grandmaison 859b2ac07d [EarlyCSE] Address post commit review for r249523.
llvm-svn: 249814
2015-10-09 09:23:01 +00:00
Arnaud A. de Grandmaison a6178a179d [EarlyCSE] Fix handling of target memory intrinsics for CSE'ing loads.
Summary:
Some target intrinsics can access multiple elements, using the pointer as a
base address (e.g. AArch64 ld4). When trying to CSE such instructions,
it must be checked the available value comes from a compatible instruction
because the pointer is not enough to discriminate whether the value is
correct.

Reviewers: ssijaric

Subscribers: mcrosier, llvm-commits, aemerson

Differential Revision: http://reviews.llvm.org/D13475

llvm-svn: 249523
2015-10-07 07:41:29 +00:00
Arnaud A. de Grandmaison 6fd488b156 [EarlyCSE] Constify ParseMemoryInst methods (NFC).
llvm-svn: 249400
2015-10-06 13:35:30 +00:00
James Molloy efbba72cb2 Add GlobalsAA as preserved to a bunch of transforms
GlobalsAA must by definition be preserved in function passes, but the passmanager doesn't know that. Make each pass explicitly preserve GlobalsAA.

llvm-svn: 247263
2015-09-10 10:22:12 +00:00
Philip Reames dfd890dd3a Allow value forwarding past release fences in EarlyCSE
A release fence acts as a publication barrier for stores within the current thread to become visible to other threads which might observe the release fence. It does not require the current thread to observe stores performed on other threads. As a result, we can allow store-load and load-store forwarding across a release fence.

We do need to make sure that stores before the fence can't be eliminated even if there's another store to the same location after the fence. In theory, we could reorder the second store above the fence and *then* eliminate the former, but we can't do this if the stores are on opposite sides of the fence.

Note: While more aggressive then what's there, this patch is still implementing a really conservative ordering.  In particular, I'm not trying to exploit undefined behavior via races, or the fact that the LangRef says only 'atomic' accesses are ordered w.r.t. fences.

Differential Revision: http://reviews.llvm.org/D11434

llvm-svn: 246134
2015-08-27 01:32:33 +00:00
Tanya Lattner 0d28f80bd1 Rename all references to old mailing lists to new lists.llvm.org address.
llvm-svn: 243999
2015-08-05 03:51:17 +00:00
Alexander Kornienko f00654e31b Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
Apparently, the style needs to be agreed upon first.

llvm-svn: 240390
2015-06-23 09:49:53 +00:00
Alexander Kornienko 70bc5f1398 Fixed/added namespace ending comments using clang-tidy. NFC
The patch is generated using this command:

tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
  -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
  llvm/lib/


Thanks to Eugene Kosov for the original patch!

llvm-svn: 240137
2015-06-19 15:57:42 +00:00
Philip Reames 7c78ef7dd9 Extend EarlyCSE to handle basic cases from JumpThreading and CVP
This patch extends EarlyCSE to take advantage of the information that a controlling branch gives us about the value of a Value within this and dominated basic blocks. If the current block has a single predecessor with a controlling branch, we can infer what the branch condition must have been to execute this block. The actual change to support this is downright simple because EarlyCSE's existing scoped hash table logic deals with most of the complexity around merging.

The patch actually implements two optimizations.
1) The first is analogous to JumpThreading in that it enables EarlyCSE's CSE handling to fold branches which are exactly redundant due to a previous branch to branches on constants. (It doesn't actually replace the branch or change the CFG.) This is pretty clearly a win since it enables substantial CFG simplification before we start trying to inline.
2) The second is analogous to CVP in that it exploits the knowledge gained to replace dominated *uses* of the original value. EarlyCSE does not otherwise reason about specific uses, so this is the more arguable one. It does enable further simplication and constant folding within the rest of the visit by EarlyCSE.

In both cases, the added code only handles the easy dominance based case of each optimization. The general case is deferred to the existing passes.

Differential Revision: http://reviews.llvm.org/D9763

llvm-svn: 238071
2015-05-22 23:53:24 +00:00
Benjamin Kramer 799003bf8c Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used.
llvm-svn: 232998
2015-03-23 19:32:43 +00:00
Mehdi Amini a28d91d81b DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
2015-03-10 02:37:25 +00:00
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
Aaron Ballman f9a1897c72 Removing LLVM_DELETED_FUNCTION, as MSVC 2012 was the last reason for requiring the macro. NFC; LLVM edition.
llvm-svn: 229340
2015-02-15 22:54:22 +00:00
David Majnemer 7679300d93 EarlyCSE: It isn't safe to CSE across synchronization boundaries
This fixes PR22514.

llvm-svn: 228760
2015-02-10 23:09:43 +00:00
Benjamin Kramer 6ab86b1bb6 EarlyCSE: Replace custom hash mixing with Hashing.h
Brings it in line with the other hashes in EarlyCSE.

llvm-svn: 227733
2015-02-01 12:30:59 +00:00
Chandler Carruth fdb9c573f7 [multiversion] Thread a function argument through all the callers of the
getTTI method used to get an actual TTI object.

No functionality changed. This just threads the argument and ensures
code like the inliner can correctly look up the callee's TTI rather than
using a fixed one.

The next change will use this to implement per-function subtarget usage
by TTI. The changes after that should eliminate the need for FTTI as that
will have become the default.

llvm-svn: 227730
2015-02-01 12:01:35 +00:00
Chandler Carruth e8c686aa86 [PM] Port EarlyCSE to the new pass manager.
I've added RUN lines both to the basic test for EarlyCSE and the
target-specific test, as this serves as a nice test that the TTI layer
in the new pass manager is in fact working well.

llvm-svn: 227725
2015-02-01 10:51:23 +00:00
Chandler Carruth 705b185f90 [PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.

The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.

I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.

There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.

The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.

Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.

The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]

Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:

1) Improving the TargetMachine interface by having it directly return
   a TTI object. Because we have a non-pass object with value semantics
   and an internal type erasure mechanism, we can narrow the interface
   of the TargetMachine to *just* do what we need: build and return
   a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
   This will include splitting off a minimal form of it which is
   sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
   target machine for each function. This may actually be done as part
   of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
   easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
   easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
   just a bit messy and exacerbating the complexity of implementing
   the TTI in each target.

Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.

Differential Revision: http://reviews.llvm.org/D7293

llvm-svn: 227669
2015-01-31 03:43:40 +00:00
Chandler Carruth d649c0ad56 [PM] Refactor the core logic to run EarlyCSE over a function into an
object that manages a single run of this pass.

This was already essentially how it worked. Within the run function, it
would point members at *stack local* allocations that were only live for
a single run. Instead, it seems much cleaner to have a utility object
whose lifetime is clearly bounded by the run of the pass over the
function and can use member variables in a more direct way.

This also makes it easy to plumb the analyses used into it from the pass
and will make it re-usable with the new pass manager.

No functionality changed here, its just a refactoring.

llvm-svn: 227162
2015-01-27 01:34:14 +00:00
Chad Rosier f9327d6fe9 Commoning of target specific load/store intrinsics in Early CSE.
Phabricator revision: http://reviews.llvm.org/D7121
Patch by Sanjin Sijaric <ssijaric@codeaurora.org>!

llvm-svn: 227149
2015-01-26 22:51:15 +00:00
Chandler Carruth 9dea5cdb8e [PM] General doxygen and comment cleanup for this pass.
llvm-svn: 227001
2015-01-24 11:44:32 +00:00
Chandler Carruth 7253bba458 [PM] Reformat this code with clang-format so that I can use clang-format
when refactoring for the new pass manager without introducing too many
formatting changes into meaning full diffs.

llvm-svn: 227000
2015-01-24 11:33:55 +00:00
Chandler Carruth b98f63dbdb [PM] Separate the TargetLibraryInfo object from the immutable pass.
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.

Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.

llvm-svn: 226157
2015-01-15 10:41:28 +00:00
Chandler Carruth 62d4215baa [PM] Move TargetLibraryInfo into the Analysis library.
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.

This is in preparation for porting this analysis to the new pass
manager.

No functionality changed, and updates inbound for Clang and Polly.

llvm-svn: 226078
2015-01-15 02:16:27 +00:00
Chandler Carruth 66b3130cda [PM] Split the AssumptionTracker immutable pass into two separate APIs:
a cache of assumptions for a single function, and an immutable pass that
manages those caches.

The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.

Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.

For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.

llvm-svn: 225131
2015-01-04 12:03:27 +00:00
Philip Reames 018dbf18c4 Tweak EarlyCSE to recognize series of dead stores
EarlyCSE is giving up on the current instruction immediately when it recognizes that the current instruction makes a previous store trivially dead. There's no reason to do this. Once the previous store has been deleted, it's perfectly legal to remember the value of the current store (for value forwarding) and the fact the store occurred (it could be dead too!).

Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D6301

llvm-svn: 222241
2014-11-18 17:46:32 +00:00
Hal Finkel 1e16fa302e EarlyCSE should ignore calls to @llvm.assume
EarlyCSE uses a simple generation scheme for handling memory-based
dependencies, and calls to @llvm.assume (which are marked as writing to memory
to ensure the preservation of control dependencies) disturb that scheme
unnecessarily. Skipping calls to @llvm.assume is legal, and the alternative
(adding AA calls in EarlyCSE) is likely undesirable (we have GVN for that).

Fixes PR21448.

llvm-svn: 221175
2014-11-03 20:21:32 +00:00
Lenny Maiorani 9eefc81219 Using a deque to manage the stack of nodes is faster here.
Vector is slow due to many reallocations as the size regularly changes in
  unpredictable ways. See the investigation provided on the mailing list for
  more information:

http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html

llvm-svn: 218182
2014-09-20 13:29:20 +00:00
Hal Finkel 60db05896a Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.

As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.

The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.

Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.

This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).

llvm-svn: 217342
2014-09-07 18:57:58 +00:00
Craig Topper f40110f4d8 [C++] Use 'nullptr'. Transforms edition.
llvm-svn: 207196
2014-04-25 05:29:35 +00:00
Chandler Carruth 964daaaf19 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Transforms/...
edition.

This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.

Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.

llvm-svn: 206844
2014-04-22 02:55:47 +00:00
Craig Topper 3e4c697ca1 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 202953
2014-03-05 09:10:37 +00:00
Rafael Espindola 935125126c Make DataLayout a plain object, not a pass.
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.

llvm-svn: 202168
2014-02-25 17:30:31 +00:00
Rafael Espindola 37dc9e19f5 Rename many DataLayout variables from TD to DL.
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.

llvm-svn: 201827
2014-02-21 00:06:31 +00:00
Paul Robinson af4e64d095 Disable most IR-level transform passes on functions marked 'optnone'.
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.

llvm-svn: 200892
2014-02-06 00:07:05 +00:00
Chandler Carruth 73523021d0 [PM] Split DominatorTree into a concrete analysis result object which
can be used by both the new pass manager and the old.

This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.

The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.

Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.

llvm-svn: 199104
2014-01-13 13:07:17 +00:00
Chandler Carruth 5ad5f15cff [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

llvm-svn: 199082
2014-01-13 09:26:24 +00:00
Michael Gottesman 2bf0173b16 Change std::deque => std::vector. No functionality change.
There is no reason to use std::deque here over std::vector. Thus given the
performance differences inbetween the two it makes sense to change deque to
vector.

llvm-svn: 196524
2013-12-05 18:42:12 +00:00
Eli Friedman 77d7fbb924 Get rid of unused isPodLike definitions.
llvm-svn: 190461
2013-09-11 00:36:54 +00:00
Chandler Carruth 9fb823bbd4 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00
Chandler Carruth ed0881b2a6 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

llvm-svn: 169131
2012-12-03 16:50:05 +00:00
Michael Ilseman 336cb79fdf Update EarlyCSE's SimpleValues to use Hashing.h for their hashes. Expanded the hashing and equality to allow for equality modulo commutativity for binary ops, and comparisons with swapping of predicates.
llvm-svn: 165509
2012-10-09 16:57:38 +00:00
Micah Villmow cdfe20b97f Move TargetData to DataLayout.
llvm-svn: 165402
2012-10-08 16:38:25 +00:00
Craig Topper a60c0f1163 Use LLVM_DELETED_FUNCTION in place of 'DO NOT IMPLEMENT' comments.
llvm-svn: 163974
2012-09-15 17:09:36 +00:00
Benjamin Kramer 8bcc971174 Make MemoryBuiltins aware of TargetLibraryInfo.
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.

Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.

Fixes PR13694 and probably others.

llvm-svn: 162841
2012-08-29 15:32:21 +00:00