is complete (with an error produced if not) and a function that merely queries
whether the type is complete. Either way we'll trigger instantiation if
necessary, but only the former will diagnose and recover from missing module
imports.
The intent of this change is to prevent a class of bugs where code would call
RequireCompleteType(..., 0) and then ignore the result. With modules, we must
check the return value and use it to determine whether the definition of the
type is visible.
This also fixes a debug info quality issue: calls to isCompleteType do not
trigger the emission of debug information for a type in limited-debug-info
mode. This allows us to avoid emitting debug information for type definitions
in more cases where we believe it is safe to do so.
llvm-svn: 256049
for the derived class into it. This is mostly just a cleanup, but could in
principle be a bugfix if there is some codepath that reaches here and didn't
previously require a complete type (I couldn't find any such codepath, though).
llvm-svn: 256037
https://llvm.org/bugs/show_bug.cgi?id=20334
Unfortunately, clang currently checks for a certain brokenness of implementations of std::initializer_list in CodeGen (void
AggExprEmitter::VisitCXXStdInitializerListExpr), not in SemaInit. Until that is fixed, make sure we don't let broken attempts that are aggregates leak through into sema, which allows maintenance of expected invariants, and avoids triggering an assertion.
llvm-svn: 254889
`pass_object_size` is our way of enabling `__builtin_object_size` to
produce high quality results without requiring inlining to happen
everywhere.
A link to the design doc for this attribute is available at the
Differential review link below.
Differential Revision: http://reviews.llvm.org/D13263
llvm-svn: 254554
This fixes a bug where one can take the address of a conditionally
enabled function to drop its enable_if guards. For example:
int foo(int a) __attribute__((enable_if(a > 0, "")));
int (*p)(int) = &foo;
int result = p(-1); // compilation succeeds; calls foo(-1)
Overloading logic has been updated to reflect this change, as well.
Functions with enable_if attributes that are always true are still
allowed to have their address taken.
Differential Revision: http://reviews.llvm.org/D13607
llvm-svn: 250090
We took both source locations from the end of the initializer list what
the code below doesn't expect. This can lead to a crash when rendering
the diagnostic (PR24816). Assert that we have more than one element in
a scalar initializer with too many elements.
llvm-svn: 248391
While working around a bug in certain standard library implementations,
we would try to diagnose the issue so that library implementors would
fix their code. However, we assumed an entity being initialized was
a non-static data member subobject when other circumstances are
possible.
This fixes PR24526.
llvm-svn: 245675
Without DR1579 implemented, the only case for -Wredundant-move is for a
parameter being returned with the same type as the function return type. Also
include a check to verify that the move constructor will be used by matching
nodes in the AST dump.
llvm-svn: 243594
Dependent types can throw off the analysis for these warnings, possibly giving
conflicting warnings and fix-its. Disabling the warning in template
instantiations will prevent this problem, and will still catch the
non-dependent cases in templates.
llvm-svn: 243538
error.
If the object being moved has a move constructor and a deleted copy constructor,
std::move is required, otherwise Clang will give a deleted constructor error.
llvm-svn: 243463
If we're returning a function parameter, copy elision isn't possible,
so we now warn for redundant move.
PR: 23819
Differential Revision: http://reviews.llvm.org/D11305
llvm-svn: 242600
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
Based on previous discussion on the mailing list, clang currently lacks support
for C99 partial re-initialization behavior:
Reference: http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-April/029188.html
Reference: http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_253.htm
This patch attempts to fix this problem.
Given the following code snippet,
struct P1 { char x[6]; };
struct LP1 { struct P1 p1; };
struct LP1 l = { .p1 = { "foo" }, .p1.x[2] = 'x' };
// this example is adapted from the example for "struct fred x[]" in DR-253;
// currently clang produces in l: { "\0\0x" },
// whereas gcc 4.8 produces { "fox" };
// with this fix, clang will also produce: { "fox" };
Differential Review: http://reviews.llvm.org/D5789
llvm-svn: 239446
The error has the form ... 'int' ... 'const int' ... dropped qualifiers. At
first glance, it appears that the const qualifier is added. Reverse the types
so that the second type is less qualified than the first.
llvm-svn: 237482
-Wpessimizing-move warns when a call to std::move would prevent copy elision
if the argument was not wrapped in a call. This happens when moving a local
variable in a return statement when the variable is the same type as the
return type or using a move to create a new object from a temporary object.
-Wredundant-move warns when an implicit move would already be made, so the
std::move call is not needed, such as when moving a local variable in a return
that is different from the return type.
Differential Revision: http://reviews.llvm.org/D7633
llvm-svn: 236075
We could probably make this work if we cared enough. However, we are
far outside any language rules at this point.
This fixes PR21834.
llvm-svn: 235818
r235046 turned "extern __declspec(selectany) int a;" from a declaration into
a definition to fix PR23242 (required for compatibility with mc.exe output).
However, this broke parsing Windows headers: A d3d11 headers contain something
like
struct SomeStruct {};
extern const __declspec(selectany) SomeStruct some_struct;
This is now a definition, and const objects either need an explicit default
ctor or an initializer so this errors out with
d3d11.h(1065,48) :
error: default initialization of an object of const type
'const CD3D11_DEFAULT' without a user-provided default constructor
(cl.exe just doesn't implement this rule, independent of selectany.)
To work around this, weaken this error into a warning for selectany decls
in microsoft mode, and recover with zero-initialization.
Doing this is a bit hairy since it adds a fixit on an error emitted
by InitializationSequence – this means it needs to build a correct AST, which
in turn means InitializationSequence::Failed() cannot return true when this
fixit is applied. As a workaround, the patch adds a fixit member to
InitializationSequence, and InitializationSequence::Perform() prints the
diagnostic if the fixit member is set right after its call to Diagnose.
That function is usually called when InitializationSequences are used –
InitListChecker::PerformEmptyInit() doesn't call it, but the InitListChecker
case never performs default-initialization, so this is technically OK.
This is the alternative, original fix for PR20208 that got reviewed in the
thread "[patch] Improve diagnostic on default-initializing const variables
(PR20208)". This change basically reverts r213725, adds the original fix for
PR20208, and makes the error a warning in Microsoft mode.
llvm-svn: 235166
Given something like 'int({}, 1)', we would try to emit a diagnostic
regarding the excess element in the scalar initializer. However, we
assumed that the initializer list had an element in it.
llvm-svn: 234565
invalidate lookup_iterators and lookup_results for some name within a
DeclContext if the lookup results for a *different* name change.
llvm-svn: 230121
subobject initialization is not possible, be sure to note the overall
initialization as having failed so that overload resolution knows that the
relevant candidate is not viable.
llvm-svn: 229353
always use the normal copy-initialization rules. Remove a special case that
tries to stay within the list initialization checker here; that makes us do the
wrong thing when list-initialization of an aggregate would not perform
aggregate initialization.
llvm-svn: 228897
based on whether "redundant" braces are ever reasonable as part of the
initialization of the entity, rather than whether the initialization is
"top-level". In passing, add a warning flag for it.
llvm-svn: 228896
initializer of the form {x}, where x is of type C or a type derived from C,
perform *non-list* initialization of the entity from x, but create a
CXXConstructExpr that knows that we used list-initialization syntax.
Plus some fixes to ensure we mangle correctly in this and related cases.
llvm-svn: 228276
... when the variable's type is a typedef of a ConstantArrayType. Just
look through the typedef (and any other sugar). We only use the
constant array type here to get the element count.
llvm-svn: 227115
clang currently calls MarkVTableUsed() for classes that get their virtual
methods called or that participate in a dynamic_cast. This is unnecessary,
since CodeGen only emits vtables when it generates constructor, destructor, and
vtt code. (*)
Note that Sema::MarkVTableUsed() doesn't cause the emission of a vtable.
Its main user-visible effect is that it instantiates virtual member functions
of template classes, to make sure that if codegen decides to write a vtable
all the entries in the vtable are defined.
While this shouldn't change the behavior of codegen (other than being faster),
it does make clang more permissive: virtual methods of templates (in particular
destructors) end up being instantiated less often. In particular, classes that
have members that are smart pointers to incomplete types will now get their
implicit virtual destructor instantiated less frequently. For example, this
used to not compile but does now compile:
template <typename T> struct OwnPtr {
~OwnPtr() { static_assert((sizeof(T) > 0), "TypeMustBeComplete"); }
};
class ScriptLoader;
struct Base { virtual ~Base(); };
struct Sub : public Base {
virtual void someFun() const {}
OwnPtr<ScriptLoader> m_loader;
};
void f(Sub *s) { s->someFun(); }
The more permissive behavior matches both gcc (where this is not often
observable, since in practice most things with virtual methods have a key
function, and Sema::DefineUsedVTables() skips vtables for classes with key
functions) and cl (which is my motivation for this change) – this fixes
PR20337. See this issue and the review thread for some discussions about
optimizations.
This is similar to r213109 in spirit. r225761 was a prerequisite for this
change.
Various tests relied on "a->f()" marking a's vtable as used (in the sema
sense), switch these to just construct a on the stack. This forces
instantiation of the implicit constructor, which will mark the vtable as used.
(*) The exception is -fapple-kext mode: In this mode, qualified calls to
virtual functions (`a->Base::f()`) still go through the vtable, and since the
vtable pointer off this doesn't point to Base's vtable, this needs to reference
Base's vtable directly. To keep this working, keep referencing the vtable for
virtual calls in apple kext mode.
llvm-svn: 227073
Only the first two items for now, changing Sections 8.5.4 [dcl.init.list] paragraph 3 and 13.3.1.7 [over.match.list] paragraph 1,
so that defining class objects and character arrays using uniform initialization syntax is actually treated as list initialization
and before it is treated aggregate initialization.
llvm-svn: 227022
Specifically, when we have this situation:
struct A {
template <typename T> struct B {
int m1 = sizeof(A);
};
B<int> m2;
};
We can't parse m1's initializer eagerly because we need A to be
complete. Therefore we wait until the end of A's class scope to parse
it. However, we can trigger instantiation of B before the end of A,
which will attempt to instantiate the field decls eagerly, and it would
build a bad field decl instantiation that said it had an initializer but
actually lacked one.
Fixed by deferring instantiation of default member initializers until
they are needed during constructor analysis. This addresses a long
standing FIXME in the code.
Fixes PR19195.
Reviewed By: rsmith
Differential Revision: http://reviews.llvm.org/D5690
llvm-svn: 222192
The check for unnamed members was intended to skip unnamed bitfields,
but it ended up skipping unnamed structs. This lead to an assertion in
IRGen.
llvm-svn: 221818
before retrying the initialization to produce diagnostics. Otherwise, we may
fail to produce any diagnostics, and silently produce invalid AST in a -Asserts
build. Also add a note to this codepath to make it more clear why we were
trying to create a temporary.
llvm-svn: 217197
Clang used a custom implementation of lookup when handling designated
initializers. The custom code was not particularly optimized and relied
on standard lookup for typo-correction anyway.
This custom code has to go, it doesn't properly support MSVC-style
anonymous structs embedded inside other records; replace it with the
typo-correction path.
This has the side effect of speeding up semantic handling of the fields
for a designated initializer while simplifying the code at the same
time.
This fixes PR20573.
Differential Revision: http://reviews.llvm.org/D4839
llvm-svn: 215372
or a class derived from T. We already supported this when initializing
_Atomic(T) from T for most (and maybe all) other reasonable values of T.
llvm-svn: 214390
This tweaks the diagnostic wording slighly, and adds a fixit on a note.
An alternative would be to add the fixit directly on the diagnostic, see
the review thread linked to from the bug for a few notes on that approach.
llvm-svn: 213725
ExtWarn/Warnings. Mostly the name of the warning was changed to match the
semantics, but in the PR20356 cases, the warning was about valid code, so the
diagnostic was changed from ExtWarn to Warning instead.
llvm-svn: 213443
If, during the initial parse of a template, we perform aggregate initialization
and form an implicit value initialization for an array type, then when we come
to instantiate the template and redo the initialization step, we would try to
match the implicit value initialization up against an array *element*, not to
the complete array.
Remarkably, we've had this bug since ~the dawn of time, but only noticed it
recently.
llvm-svn: 213332
-- a constructor list initialization that unpacked an initializer list into
constructor arguments and
-- a list initialization that created as std::initializer_list and passed it
as the first argument to a constructor
in the AST. Use this flag while instantiating templates to provide the right
semantics for the resulting initialization.
llvm-svn: 213224
constructor (and pass it an implicitly-generated std::initializer_list object),
be sure to mark the resulting construction as list-initialization. This fixes
an assert in template instantiation where we previously thought we'd got direct
non-list initialization without any parentheses.
llvm-svn: 213201
Also, forgot to say in the commit message of r212238: Library authors will
see a warning about this issue if they build with -Wsystem-headers.
llvm-svn: 212243
r210091 made initialization checking more strict in c++11 mode. LWG2193 is
about changing standard libraries to still be valid under these new rules,
but older libstdc++ (e.g. libstdc++4.6 in -D_GLIBCXX_DEBUG=1 mode, or stlport)
do not implement that yet. So fall back to the C++03 semantics for container
classes in system headers below the std namespace.
llvm-svn: 212238
and is unrelated to the NEON intrinsics in arm_neon.h. On little
endian machines it works fine, however on big endian machines it
exhibits surprising behaviour:
uint32x2_t x = {42, 64};
return vget_lane_u32(x, 0); // Will return 64.
Because of this, explicitly call out that it is unsupported on big
endian machines.
This patch will emit the following warning in big-endian mode:
test.c:3:15: warning: vector initializers are a GNU extension and are not compatible with NEON intrinsics [-Wgnu]
int32x4_t x = {0, 1, 2, 3};
^
test.c:3:15: note: consider using vld1q_s32() to initialize a vector from memory, or vcombine_s32(vcreate_s32(), vcreate_s32()) to initialize from integer constants
1 warning generated.
llvm-svn: 211362
The compilation pipeline doesn't actually need to know about the high-level
concept of diagnostic mappings, and hiding the final computed level presents
several simplifications and other potential benefits.
The only exceptions are opportunistic checks to see whether expensive code
paths can be avoided for diagnostics that are guaranteed to be ignored at a
certain SourceLocation.
This commit formalizes that invariant by introducing and using
DiagnosticsEngine::isIgnored() in place of individual level checks throughout
lex, parse and sema.
llvm-svn: 211005
elements from {}, rather than value-initializing them. This permits calling an
initializer-list constructor or constructing a std::initializer_list object.
(It would also permit initializing a const reference or rvalue reference if
that weren't explicitly prohibited by other rules.)
llvm-svn: 210091
just the extremely specific case of a trailing array element that couldn't be
initialized because the default constructor for the element type is deleted.
Also reword the diagnostic to better match our other context diagnostics and to
prepare for the implementation of core issue 1070.
llvm-svn: 210083
These note diags have the same message and can be unified further but for now
let's just bring them together.
Incidental change: Display a source range in the final attr diagnostic.
llvm-svn: 209728
The conventional form is '<action> to silence this warning'.
Also call the diagnostic an 'issue' rather than a 'message' because the latter
term is more widely used with reference to message expressions.
llvm-svn: 209052
Summary:
Previously, we would generate a single name for all reference
temporaries and allow LLVM to rename them for us. Instead, number the
reference temporaries as we build them in Sema.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3554
llvm-svn: 207776
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
cstring, converted to NSString, produce the
matching AST for it. This also required some
refactoring of the previous code. // rdar://14106083
llvm-svn: 197605
of objc_bridge_related attribute; eliminate
unnecessary diagnostics which is issued elsewhere,
fixit now produces a valid AST tree per convention.
This results in some simplification in handling of
this attribute as well. // rdar://15499111
llvm-svn: 197436
attribute in sema and issuing a variety of diagnostics lazily
for misuse of this attribute (and what to do) when converting
from CF types to ObjectiveC types (and vice versa).
// rdar://15499111
llvm-svn: 196629
For an init capture, process the initialization expression
right away. For lambda init-captures such as the following:
const int x = 10;
auto L = [i = x+1](int a) {
return [j = x+2,
&k = x](char b) { };
};
keep in mind that each lambda init-capture has to have:
- its initialization expression executed in the context
of the enclosing/parent decl-context.
- but the variable itself has to be 'injected' into the
decl-context of its lambda's call-operator (which has
not yet been created).
Each init-expression is a full-expression that has to get
Sema-analyzed (for capturing etc.) before its lambda's
call-operator's decl-context, scope & scopeinfo are pushed on their
respective stacks. Thus if any variable is odr-used in the init-capture
it will correctly get captured in the enclosing lambda, if one exists.
The init-variables above are created later once the lambdascope and
call-operators decl-context is pushed onto its respective stack.
Since the lambda init-capture's initializer expression occurs in the
context of the enclosing function or lambda, therefore we can not wait
till a lambda scope has been pushed on before deciding whether the
variable needs to be captured. We also need to process all
lvalue-to-rvalue conversions and discarded-value conversions,
so that we can avoid capturing certain constant variables.
For e.g.,
void test() {
const int x = 10;
auto L = [&z = x](char a) { <-- don't capture by the current lambda
return [y = x](int i) { <-- don't capture by enclosing lambda
return y;
}
};
If x was not const, the second use would require 'L' to capture, and
that would be an error.
Make sure TranformLambdaExpr is also aware of this.
Patch approved by Richard (Thanks!!)
http://llvm-reviews.chandlerc.com/D2092
llvm-svn: 196454
substitution failure, allow a flag to be set on the Diagnostic object,
to mark it as 'causes substitution failure'.
Refactor Diagnostic.td and the tablegen to use an enum for SFINAE behavior
rather than a bunch of flags.
llvm-svn: 194444
an additional conversion (other than a qualification conversion) would be
required after the explicit conversion.
Conversely, do allow explicit conversion functions to be used when initializing
a temporary for a reference binding in direct-list-initialization.
llvm-svn: 191150
rather than a post-processing action, so we can support inserting these checks
at stages other than the end of the initialization. No functionality change
intended.
llvm-svn: 191146
AssignConvertType::IncompatibleVectors means the two types are in fact
compatible. :)
No testcase; I don't think the extra init list has any actual visible effect
other than making the resulting AST dump look a bit strange.
llvm-svn: 190845
passing a retainable object arg to a CF audited function
expecting a CF object type. Issue a normal type mismatch
diagnostic. This is wip // rdar://14569171
llvm-svn: 187532
return false;
in a function returning a pointer. 'false' was a null pointer constant in C++98
but is not in C++11. Punch a very small hole in the initialization rules in
C++11 mode to allow this specific case in system headers.
llvm-svn: 184395
the result of a cast-to-reference-type lifetime-extends the object to which the
reference inside the cast binds.
This requires us to look for subobject adjustments on both the inside and the
outside of the MaterializeTemporaryExpr when looking for a temporary to
lifetime-extend (which we also need for core issue 616, and possibly 1213).
llvm-svn: 184024
Introduce CXXStdInitializerListExpr node, representing the implicit
construction of a std::initializer_list<T> object from its underlying array.
The AST representation of such an expression goes from an InitListExpr with a
flag set, to a CXXStdInitializerListExpr containing a MaterializeTemporaryExpr
containing an InitListExpr (possibly wrapped in a CXXBindTemporaryExpr).
This more detailed representation has several advantages, the most important of
which is that the new MaterializeTemporaryExpr allows us to directly model
lifetime extension of the underlying temporary array. Using that, this patch
*drastically* simplifies the IR generation of this construct, provides IR
generation support for nested global initializer_list objects, fixes several
bugs where the destructors for the underlying array would accidentally not get
invoked, and provides constant expression evaluation support for
std::initializer_list objects.
llvm-svn: 183872
CXXCtorInitializers to the point where we perform the questionable lifetime
extension. This exposed a selection of false negatives in the warning.
llvm-svn: 183869
were lacking ExprWithCleanups nodes in some cases where the new approach to
lifetime extension needed them).
Original commit message:
Rework IR emission for lifetime-extended temporaries. Instead of trying to walk
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183859
with a string. This case is sort of tricky because we can't modify the
StringLiteral used to represent such initializers.
We are forced to decompose the string into individual characters.
Fixes <rdar://problem/10465114>.
llvm-svn: 183791
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183721
handle temporaries which have been lifetime-extended to static storage duration
within constant expressions. This correctly handles nested lifetime extension
(through reference members of aggregates in aggregate initializers) but
non-constant-expression emission hasn't yet been updated to do the same.
llvm-svn: 183283
This commit improves Clang's diagnostics for string initialization.
Where it would previously say:
/tmp/a.c:3:9: error: array initializer must be an initializer list
wchar_t s[] = "Hi";
^
/tmp/a.c:4:6: error: array initializer must be an initializer list or string literal
char t[] = L"Hi";
^
It will now say
/tmp/a.c:3:9: error: initializing wide char array with non-wide string literal
wchar_t s[] = "Hi";
^
/tmp/a.c:4:6: error: initializing char array with wide string literal
char t[] = L"Hi";
^
As a bonus, it also fixes the fact that Clang would previously reject
this valid C11 code:
char16_t s[] = u"hi";
char32_t t[] = U"hi";
because it would only recognize the built-in types for char16_t and
char32_t, which do not exist in C.
llvm-svn: 181880
MSVC provides __wchar_t. This is the same as the built-in wchar_t type
from C++, but it is also available with -fno-wchar and in C.
The commit changes ASTContext to have two different types for this:
- WCharTy is the built-in type used for wchar_t in C++ and __wchar_t.
- WideCharTy is the type of a wide character literal. In C++ this is
the same as WCharTy, and in C it is an integer type compatible with
the type in <stddef.h>.
This fixes PR15815.
llvm-svn: 181587
- References to ObjC bit-field ivars are bit-field lvalues;
fixes rdar://13794269, which got me started down this.
- Introduce Expr::refersToBitField, switch a couple users to
it where semantically important, and comment the difference
between this and the existing API.
- Discourage Expr::getBitField by making it a bit longer and
less general-sounding.
- Lock down on const_casts of bit-field gl-values until we
hear back from the committee as to whether they're allowed.
llvm-svn: 181252
Previously, this compound literal expression (a GNU extension in C++):
(AggregateWithDtor){1, 2}
resulted in this AST:
`-CXXBindTemporaryExpr [...] 'struct Point' (CXXTemporary [...])
`-CompoundLiteralExpr [...] 'struct AggregateWithDtor'
`-CXXBindTemporaryExpr [...] 'struct AggregateWithDtor' (CXXTemporary [...])
`-InitListExpr [...] 'struct AggregateWithDtor'
|-IntegerLiteral [...] 'int' 1
`-IntegerLiteral [...] 'int' 2
Note the two CXXBindTemporaryExprs. The InitListExpr is really part of the
CompoundLiteralExpr, not an object in its own right. By introducing a new
entity initialization kind in Sema specifically for compound literals, we
avoid the treatment of the inner InitListExpr as a temporary.
`-CXXBindTemporaryExpr [...] 'struct Point' (CXXTemporary [...])
`-CompoundLiteralExpr [...] 'struct AggregateWithDtor'
`-InitListExpr [...] 'struct AggregateWithDtor'
|-IntegerLiteral [...] 'int' 1
`-IntegerLiteral [...] 'int' 2
llvm-svn: 181212
to use. This makes very little difference right now (other than suppressing
follow-on errors in some cases), but will matter more once we support deduced
return types (we don't want expressions with undeduced return types in the
AST).
llvm-svn: 181107
Add a CXXDefaultInitExpr, analogous to CXXDefaultArgExpr, and use it both in
CXXCtorInitializers and in InitListExprs to represent a default initializer.
There's an additional complication here: because the default initializer can
refer to the initialized object via its 'this' pointer, we need to make sure
that 'this' points to the right thing within the evaluation.
llvm-svn: 179958
For this source:
const int &ref = someStruct.bitfield;
We used to generate this AST:
DeclStmt [...]
`-VarDecl [...] ref 'const int &'
`-MaterializeTemporaryExpr [...] 'const int' lvalue
`-ImplicitCastExpr [...] 'const int' lvalue <NoOp>
`-MemberExpr [...] 'int' lvalue bitfield .bitfield [...]
`-DeclRefExpr [...] 'struct X' lvalue ParmVar [...] 'someStruct' 'struct X'
Notice the lvalue inside the MaterializeTemporaryExpr, which is very
confusing (and caused an assertion to fire in the analyzer - PR15694).
We now generate this:
DeclStmt [...]
`-VarDecl [...] ref 'const int &'
`-MaterializeTemporaryExpr [...] 'const int' lvalue
`-ImplicitCastExpr [...] 'int' <LValueToRValue>
`-MemberExpr [...] 'int' lvalue bitfield .bitfield [...]
`-DeclRefExpr [...] 'struct X' lvalue ParmVar [...] 'someStruct' 'struct X'
Which makes a lot more sense. This allows us to remove code in both
CodeGen and AST that hacked around this special case.
The commit also makes Clang accept this (legal) C++11 code:
int &&ref = std::move(someStruct).bitfield
PR15694 / <rdar://problem/13600396>
llvm-svn: 179250
The TypeLoc hierarchy used the llvm::cast machinery to perform undefined
behavior by casting pointers/references to TypeLoc objects to derived types
and then using the derived copy constructors (or even returning pointers to
derived types that actually point to the original TypeLoc object).
Some context is in this thread:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-December/056804.html
Though it's spread over a few months which can be hard to read in the mail
archive.
llvm-svn: 175462
MarkMemberReferenced instead of marking functions referenced directly. An audit
of callers to MarkFunctionReferenced and DiagnoseUseOfDecl also caused a few
other changes:
* don't mark functions odr-used when considering them for an initialization
sequence. Do mark them referenced though.
* the function nominated by the cleanup attribute should be diagnosed.
* operator new/delete should be diagnosed when building a 'new' expression.
llvm-svn: 174951
resolving an overloaded function reference within an initializer list.
Previously we would try to resolve the overloaded function reference without
first stripping off the InitListExpr wrapper.
llvm-svn: 172517
Changed getLocStart() and getLocEnd() to be required for Stmts, and make
getSourceRange() optional. The default implementation for getSourceRange()
is build the range by calling getLocStart() and getLocEnd().
llvm-svn: 171067
copy-list-initialization (and doesn't add an additional copy step):
Fill in the ListInitialization bit when creating a CXXConstructExpr. Use it
when instantiating initializers in order to correctly handle instantiation of
copy-list-initialization. Teach TreeTransform that function arguments are
initializations, and so need this special treatment too. Finally, remove some
hacks which were working around SubstInitializer's shortcomings.
llvm-svn: 170489
This does limit these typedefs to being sequences, but no current usage
requires them to be contiguous (we could expand this to a more general
iterator pair range concept at some point).
Also, it'd be nice if SmallVector were constructible directly from an ArrayRef
but this is a bit tricky since ArrayRef depends on SmallVectorBaseImpl for the
inverse conversion. (& generalizing over all range-like things, while nice,
would require some nontrivial SFINAE I haven't thought about yet)
llvm-svn: 170482
properly, rather than faking it up by pretending that a reference member makes
the default constructor non-trivial. That leads to rejects-valids when putting
such types inside unions.
llvm-svn: 169662
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
objc_loadWeak. This retains and autorelease the weakly-refereced
object. This hidden autorelease sometimes makes __weak variable alive even
after the weak reference is erased, because the object is still referenced
by an autorelease pool. This patch overcomes this behavior by loading a
weak object via call to objc_loadWeakRetained(), followng it by objc_release
at appropriate place, thereby removing the hidden autorelease. // rdar://10849570
llvm-svn: 168740
new container so we can safely iterate over them.
The container holding the lookup decls can under certain conditions
be changed while iterating (e.g. because of deserialization).
llvm-svn: 167816
Within the body of the loop the underlying map may be modified via
Sema::AddOverloadCandidate
-> Sema::CompareReferenceRelationship
-> Sema::RequireCompleteType
to avoid the use of invalid iterators the sequence is copied first.
A reliable, though large, test case is available - it will be reduced and
committed shortly.
Patch by Robert Muth. Review by myself, Nico Weber, and Rafael Espindola.
llvm-svn: 166188
-Allow Sema to do more processing on the initial Expr before checking it.
-Remove the special conditions in HandleExpr()
-Move the code so that only one call site is needed.
-Removed the function from Sema and only call it locally.
-Warn on potentially evaluated reference variables, not just casts to r-values.
-Update tests.
llvm-svn: 164951
actually perform value initialization rather than trying to fake it with a call
to the default constructor. Fixes various bugs related to the previously-missing
zero-initialization in this case.
I've also moved this and the other list initialization 'special case' from
TryConstructorInitialization into TryListInitialization where they belong.
llvm-svn: 159733
* Escape #, < and @ symbols where Doxygen would try to interpret them;
* Fix several function param documentation where names had got out of sync;
* Delete param documentation referring to parameters that no longer exist.
llvm-svn: 158472
In addition, I've made the pointer and reference typedef 'void' rather than T*
just so they can't get misused. I would've omitted them entirely but
std::distance likes them to be there even if it doesn't use them.
This rolls back r155808 and r155869.
Review by Doug Gregor incorporating feedback from Chandler Carruth.
llvm-svn: 158104
temporary or an array subobject of a class temporary, and the resulting value
is used to initialize a pointer which outlives the temporary. Such a pointer
is always left dangling after the initialization completes and the array's
lifetime ends.
In order to detect this situation, this change also adds an
LValueClassification of LV_ArrayTemporary for temporaries of array type which
aren't subobjects of class temporaries. These occur in C++11 T{...} and GNU C++
(T){...} expressions, when T is an array type. Previously we treated the former
as a generic prvalue and the latter as a class temporary.
llvm-svn: 157955
in-class initializer for one of its fields. Value-initialization of such
a type should use the in-class initializer!
The former was just a bug, the latter is a (reported) standard defect.
llvm-svn: 156274
off PartialDiagnostic. PartialDiagnostic is rather heavyweight for
something that is in the critical path and is rarely used. So, switch
over to an abstract-class-based callback mechanism that delays most of
the work until a diagnostic is actually produced. Good for ~11k code
size reduction in the compiler and 1% speedup in -fsyntax-only on the
code in <rdar://problem/11004361>.
llvm-svn: 156176
filter_decl_iterator had a weird mismatch where both op* and op-> returned T*
making it difficult to generalize this filtering behavior into a reusable
library of any kind.
This change errs on the side of value, making op-> return T* and op* return
T&.
(reviewed by Richard Smith)
llvm-svn: 155808
- The [class.protected] restriction is non-trivial for any instance
member, even if the access lacks an object (for example, if it's
a pointer-to-member constant). In this case, it is equivalent to
requiring the naming class to equal the context class.
- The [class.protected] restriction applies to accesses to constructors
and destructors. A protected constructor or destructor can only be
used to create or destroy a base subobject, as a direct result.
- Several places were dropping or misapplying object information.
The standard could really be much clearer about what the object type is
supposed to be in some of these accesses. Usually it's easy enough to
find a reasonable answer, but still, the standard makes a very confident
statement about accesses to instance members only being possible in
either pointer-to-member literals or member access expressions, which
just completely ignores concepts like constructor and destructor
calls, using declarations, unevaluated field references, etc.
llvm-svn: 154248