For now -fno-math-errno is the default on BSD-derived platforms (Darwin,
DragonFlyBSD, FreeBSD, NetBSD, OpenBSD). If the default is not right for
your platform, please yell. I only verified the result with the default
compilers on Darwin and FreeBSD.
llvm-svn: 155990
-fpack-struct's handling has changed in CC1 (one of only two flags that needed changing) because the driver treats "-fpack-struct" as a boolean flag, and CC1 (did) treat it as an option with a separated value.
This change causes -fpack-struct=X to be forwarded correctly to -fpack-struct=X instead of erroneously to "-fpack-struct X"
llvm-svn: 155981
architecture; this was happening for tools such as lipo and dsymutil.
Also, if no -arch option has been specified, set the architecture based
on the TC default.
rdar://11329656
llvm-svn: 155730
Linux and other (non-Darwin) platforms and have it use -fmath-errno by
default (for better or worse).
Darwin has seen the light here and uses -fno-math-errno by default, this
patch preserves that.
If any maintainers for a non-Linux platform would also like to opt-in to
-fno-math-errno by default, I'm happy to add folks, but we're currently
getting buts and misleading comparisons with GCC due to this difference
in behavior on Linux at least.
llvm-svn: 155607
requires the -plugin to come before any -plugin-opt options, we were passing
them the other way around. With this one can run (for example):
clang -o foo foo.c -O4 -Wl,-plugin-opt=generate-api-file
llvm-svn: 154357
First, this patch cleans up the parsing of the PIC and PIE family of
options in the driver. The existing logic failed to claim arguments all
over the place resulting in kludges that marked the options as unused.
Instead actually walk all of the arguments and claim them properly.
We now treat -f{,no-}{pic,PIC,pie,PIE} as a single set, accepting the
last one on the commandline. Previously there were lots of ordering bugs
that could creep in due to the nature of the parsing. Let me know if
folks would like weird things such as "-fPIE -fno-pic" to turn on PIE,
but disable full PIC. This doesn't make any sense to me, but we could in
theory support it.
Options that seem to have intentional "trump" status (-static, -mkernel,
etc) continue to do so and are commented as such.
Next, a -pie-level flag is threaded into the frontend, rigged to
a language option, and handled preprocessor, setting up the appropriate
defines. We'll now have the correct defines when compiling with -fpie.
The one place outside of the preprocessor that was inspecting the PIC
level (as opposed to the relocation model, which is set and handled
separately, yay!) is in the GNU ObjC runtime. I changed it to exactly
preserve existing behavior. If folks want to change its behavior in the
face of PIE, they can do that in a separate patch.
Essentially the only functionality changed here is the preprocessor
defines and bug-fixes to the argument management.
Tests have been updated and extended to test all of this a bit more
thoroughly.
llvm-svn: 154291
However, the '-x' option has special handling and wasn't following this
paradigm. Fix it to do so by claiming the arg as we parse the '-x' option.
rdar://11203340
llvm-svn: 154231
inside of a sysroot targeting a system+sysroot which is "similar" or
"compatible" with the host system. This shows up when trying to build
system images on largely compatible hardware as-if fully cross compiled.
The problem is that previously we *perfectly* mimiced GCC here, and it
turns out GCC has a bug that no one has really stumbled across. GCC will
try to look in thy system prefix ('/usr/local' f.ex.) into which it is
instaled to find libraries installed along side GCC that should be
preferred to the base system libraries ('/usr' f.ex.). This seems not
unreasonable, but it has a very unfortunate consequence when combined
with a '--sysroot' which does *not* contain the GCC installation we're
using to complete the toolchain. That results in some of the host
system's library directories being searched during the link.
Now, it so happens that most folks doing stuff like this use
'--with-sysroot' and '--disable-multilib' when configuring GCC. Even
better, they're usually not cross-compiling to a target that is similar
to the host. As a result, searching the host for libraries doesn't
really matter -- most of the time weird directories get appended that
don't exist (no arm triple lib directory, etc). Even if you're
cross-compiling from 32-bit to 64-bit x86 or vice-versa, disabling
multilib makes it less likely that you'll actually find viable libraries
on the host. But that's just luck. We shouldn't rely on this, and this
patch disables looking in the system prefix containing the GCC
installation if that system prefix is *outside* of the sysroot. For
empty sysroots, this has no effect. Similarly, when using the GCC
*inside* of the sysroot, we still track wherever it is installed within
the sysroot and look there for libraries. But now we can use a cross
compiler GCC installation outside the system root, and only look for the
crtbegin.o in the GCC installation, and look for all the other libraries
inside the system root.
This should fix PR12478, allowing Clang to be used when building
a ChromiumOS image without polluting the image with libraries from the
host system.
llvm-svn: 154176
uses Neon instructions for single-precision FP.
-mfpmath=neon is analogous to passing llc -mattr=+neonfp.
-mfpmath=[vfp|vfp2|vfp3|vfp4] is analogous to passing llc -mattr=-neonfp.
rdar://11108618
llvm-svn: 154046
On msys bash, with %pathsep==os.pathsep==';', I can see lines like below in this script;
env DIR=X:/foo%{pathsep}X:/bar
Then it is expanded to;
env DIR=X:/foo;X:/bar
It should be with quote;
env "DIR=X:/foo;X:/bar"
llvm-svn: 153402