Summary:
Replace the matcher if-statements for each rule with a state-machine. This
significantly reduces compile time, memory allocations, and cumulative memory
allocation when compiling AArch64InstructionSelector.cpp.o after r303259 is
recommitted.
The following patches will expand on this further to fully fix the regressions.
Reviewers: rovka, ab, t.p.northover, qcolombet, aditya_nandakumar
Reviewed By: ab
Subscribers: vitalybuka, aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D33758
llvm-svn: 307079
This enables us to ensure better LTO and code generation in the face of module linking.
Remove a report_fatal_error from the TargetMachine and replace it with an assert in ARMSubtarget - and remove the test that depended on the error. The assertion will still fire in the case that we were reporting before, but error reporting needs to be in front end tools if possible for options parsing.
llvm-svn: 306939
On big-endian machines the high and low parts of the value accessed by ldrexd
and strexd are swapped around. To account for this we swap inputs and outputs
in ISelLowering.
Patch by Bharathi Seshadri.
llvm-svn: 306865
In r301116, a custom lowering needed to be introduced to be able to
legalize 8 and 16-bit divisions on ARM targets without a division
instruction, since 2-step legalization (WidenScalar from 8 bit to 32
bit, then Libcall the 32-bit division) doesn't work.
This fixes this and makes this kind of multi-step legalization, where
first the size of the type needs to be changed and then some action is
needed that doesn't require changing the size of the type,
straighforward to specify.
Differential Revision: https://reviews.llvm.org/D32529
llvm-svn: 306806
Summary:
TBB and THH allow using a Thumb GPR or the PC as destination operand.
A few machine verifier failures where due to those instructions not
expecting PC as destination operand.
Add -verify-machineinstrs to test/CodeGen/ARM/jump-table-tbh.ll to add
test coverage even if expensive checks are disabled.
Reviewers: MatzeB, t.p.northover, jmolloy
Reviewed By: MatzeB
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D34610
llvm-svn: 306654
The current heuristic in isProfitableToIfCvt assumes we have a branch predictor,
and so gives the wrong answer in some cases when we don't. This patch adds a
subtarget feature to indicate that a subtarget has no branch predictor, and
changes the heuristic in isProfitableToiIfCvt when it's present. This gives a
slight overall improvement in a set of embedded benchmarks on Cortex-M4 and
Cortex-M33.
Differential Revision: https://reviews.llvm.org/D34398
llvm-svn: 306547
The benchmarking summarized in
http://lists.llvm.org/pipermail/llvm-dev/2017-May/113525.html showed
this is beneficial for a wide range of cores.
As is to be expected, quite a few small adaptations are needed to the
regressions tests, as the difference in scheduling results in:
- Quite a few small instruction schedule differences.
- A few changes in register allocation decisions caused by different
instruction schedules.
- A few changes in IfConversion decisions, due to a difference in
instruction schedule and/or the estimated cost of a branch mispredict.
llvm-svn: 306514
* Mark as legal for (s32, i1, s32, s32)
* Map everything into GPRs
* Select to two instructions: a CMP of the condition against 0, to set
the flags, and a MOVCCr to select between the two inputs based on the
flags that we've just set
llvm-svn: 306382
processFixupValue is called on every relaxation iteration. applyFixup
is only called once at the very end. applyFixup is then the correct
place to do last minute changes and value checks.
While here, do proper range checks again for fixup_arm_thumb_bl. We
used to do it, but dropped because of thumb2. We now do it again, but
use the thumb2 range.
llvm-svn: 306177
X86_64 COFF only has support for 32 bit pcrel relocations. Produce an
error on all others.
Note that gnu as has extended the relocation values to support
this. It is not clear if we should support the gnu extension.
llvm-svn: 306082
Summary:
The ARM ELF ABI requires the linker to do interworking for wide
conditional branches from Thumb code to ARM code.
That was pointed out by @peter.smith in the comments for D33436.
Reviewers: rafael, peter.smith, echristo
Reviewed By: peter.smith
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits, peter.smith
Differential Revision: https://reviews.llvm.org/D34447
llvm-svn: 306009
This has been deprecated since ARMARM v7-AR, release C.b, published back
in 2012.
This also removes test/CodeGen/Thumb2/ifcvt-neon.ll that originally was
introduced to check that conditionalization of Neon instructions did
happen when generating Thumb2. However, the test had evolved and was no
longer testing that. Rather than trying to adapt that test, this commit
introduces test/CodeGen/Thumb2/ifcvt-neon-deprecated.mir, since we can
now use the MIR framework to write nicer/more maintainable tests.
llvm-svn: 305998
This patch makes a couple of changes to how we decide whether to use the narrow
or wide encoding of thumb2 instructions:
* Common out the detection of the .w qualifier
* Check for the CPSR operand in a consistent way
Differential Revision: https://reviews.llvm.org/D34460
llvm-svn: 305992
Summary:
This patch adds a macro fusion using CodeGen/MacroFusion.cpp to pair AES
instructions back to back and adds FeatureFuseAES to enable the feature.
Reviewers: evandro, javed.absar, rengolin, t.p.northover
Reviewed By: javed.absar
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D34142
llvm-svn: 305988
Resubmission of r305387, which was reverted at r305390. The Address
Sanitizer caught a stack-use-after-scope of a Twine variable. This
is now fixed by passing the Twine directly as a function parameter.
The ARM backend asserts against constant pool lowering when it generates
execute-only code in order to prevent the generation of constant pools in
the text section. It appears that target independent optimizations might
generate DAG nodes that represent constant pools. By lowering such nodes
as global addresses we don't violate the semantics of execute-only code
and also it is guaranteed that execute-only behaves correct with the
position-independent addressing modes that support execute-only code.
Differential Revision: https://reviews.llvm.org/D33773
llvm-svn: 305776
Add support throughout the pipeline:
- mark as legal for s32 and pointers
- map to GPRs
- lower to a sequence of instructions, which moves 0 or 1 into the
result register based on the flags set by a CMPrr
We have copied from FastISel a helper function which maps CmpInst
predicates into ARMCC codes. Ideally, we should be able to move it
somewhere that both FastISel and GlobalISel can use.
llvm-svn: 305672
Add support for modulo for targets that have hardware division and for
those that don't. When hardware division is not available, we have to
choose the correct libcall to use. This is generally straightforward,
except for AEABI.
The AEABI variant is trickier than the other libcalls because it
returns { quotient, remainder }, instead of just one value like the
other libcalls that we've seen so far. Therefore, we need to use custom
lowering for it. However, we don't want to have too much special code,
so we refactor the target-independent code in the legalizer by adding a
helper for replacing an instruction with a libcall. This helper is used
by the legalizer itself when dealing with simple calls, and also by the
custom ARM legalization for the more complicated AEABI divmod calls.
llvm-svn: 305459
Lowering mixed struct args, params and returns used G_INSERT, which is a
bit more convoluted to support through the entire pipeline. Since they
don't occur that often in practice, it's probably wiser to leave them
out until later.
Meanwhile, we can lower homogeneous structs using G_MERGE_VALUES, which
has good support in the legalizer. These occur e.g. as the return of
__aeabi_idivmod, so it's nice to be able to support them.
llvm-svn: 305458
This reverts commit 3a204faa093c681a1e96c5e0622f50649b761ee0.
I've upset a buildbot which runs the address sanitizer:
ERROR: AddressSanitizer: stack-use-after-scope
lib/Target/ARM/ARMISelLowering.cpp:2690
That Twine variable is used illegally.
llvm-svn: 305390
The ARM backend asserts against constant pool lowering when it generates
execute-only code in order to prevent the generation of constant pools in
the text section. It appears that target independent optimizations might
generate DAG nodes that represent constant pools. By lowering such nodes
as global addresses we don't violate the semantics of execute-only code
and also it is guaranteed that execute-only behaves correct with the
position-independent addressing modes that support execute-only code.
Differential Revision: https://reviews.llvm.org/D33773
llvm-svn: 305387
The VFNM[AS] instructions did not have scheduling information attached, which
was causing assertion failures with the Cortex-A57 scheduling model and
-fp-contract=fast, because the Cortex-A57 sched model claims to be complete.
Differential Revision: https://reviews.llvm.org/D34139
llvm-svn: 305288
Summary: The method TargetTransformInfo::getRegisterBitWidth() is declared const, but the type erasing implementation classes (TargetTransformInfo::Concept & TargetTransformInfo::Model) that were introduced by Chandler in https://reviews.llvm.org/D7293 do not have the method declared const. This is an NFC to tidy up the const consistency between TTI and its implementation.
Reviewers: chandlerc, rnk, reames
Reviewed By: reames
Subscribers: reames, jfb, arsenm, dschuff, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, llvm-commits
Differential Revision: https://reviews.llvm.org/D33903
llvm-svn: 305189
This patch creates a customised machine-scheduler for ARM targets,
so that subsequently DAG mutations etc can be added.
Reviewed by: hahn, rengolin, rovka.
Differential Revision: https://reviews.llvm.org/D34039
llvm-svn: 305078
The scalar VFMS instructions did not have scheduling information attached (but
VFMA did), which was causing assertion failures with the Cortex-A57 scheduling
model and -fp-contract=fast.
Differential Revision: https://reviews.llvm.org/D34040
llvm-svn: 305064
According to the commit message from r296921, G_MERGE_VALUES and
G_INSERT are to be preferred over G_SEQUENCE. Therefore, stop generating
G_SEQUENCE in the ARM backend and remove the code dealing with it.
This boils down to the code breaking up double values for the soft float
calling convention. Use G_MERGE_VALUES + G_UNMERGE_VALUES instead of
G_SEQUENCE + G_EXTRACT for it. This maps very nicely to VMOVDRR +
VMOVRRD and simplifies the code in the instruction selector.
There's one occurence of G_SEQUENCE left in arm-irtranslator.ll, but
that is part of the target-independent code for translating constant
structs. Therefore, it is beyond the scope of this commit.
llvm-svn: 304902
This is identical to the support for the other binary operators:
- widen to s32
- map into GPR
- select ANDrr (via TableGen'erated code)
llvm-svn: 304885
Summary:
Relocations are required for unconditional branches to function symbols with
different execution mode. Without this patch, incorrect branches are
generated for tail calls between functions with different execution
mode.
Reviewers: peter.smith, rafael, echristo, kristof.beyls
Reviewed By: peter.smith
Subscribers: aemerson, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33898
llvm-svn: 304882
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
My previous commit r304702 introduced a new case into a switch statement.
This case defined a variable but I forgot to add the curly brackets around the
case to limit the scope.
This change puts the curly braces back in so that the next person that adds a
case doesn't get a build failure. Thanks to avieira for the spot.
Differential Revision: https://reviews.llvm.org/D33931
llvm-svn: 304785
When lowering calls, we generate instructions with machine opcodes
rather than generic ones. Therefore, we need to constrain the register
classes of the operands.
Also enable the machine verifier on the arm-irtranslator.ll test, since
that would've caught this issue.
Fixes (part of) PR32146.
llvm-svn: 304712
This change adds a new fixup fixup_t2_so_imm for the t2_so_imm_asmoperand
"T2SOImm". The fixup permits code such as:
.L1:
sub r3, r3, #.L2 - .L1
.L2:
to assemble in Thumb2 as well as in ARM state.
The operand predicate isT2SOImm() explicitly doesn't match expressions
containing :upper16: and :lower16: as expressions with these operators
must match the movt and movw instructions.
The test mov r0, foo2 in thumb2-diagnostics is moved to a new file as the
fixup delays the error message till after the assembler has quit due to
the other errors.
As the mov instruction shares the t2_so_imm_asmoperand mov instructions
with a non constant expression now match t2MOVi rather than t2MOVi16 so the
error message is slightly different.
Fixes PR28647
Differential Revision: https://reviews.llvm.org/D33492
llvm-svn: 304702
Very very similar to the support for arrays. As with arrays, we don't
support returning large structs that wouldn't fit in R0-R3. Most
front-ends would likely use sret arguments for that anyway.
The only significant difference is that when splitting a struct, we need
to make sure we set the correct original alignment on each member,
otherwise it may get split incorrectly between stack and registers.
llvm-svn: 304536
Summary:
Without using a fixup in this case, BL will be used instead of BLX to
call internal ARM functions from Thumb functions.
Reviewers: rafael, t.p.northover, peter.smith, kristof.beyls
Reviewed By: peter.smith
Subscribers: srhines, echristo, aemerson, rengolin, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33436
llvm-svn: 304413
This adds a callback to the LLVMTargetMachine that lets target indicate
that they do not pass the machine verifier checks in all cases yet.
This is intended to be a temporary measure while the targets are fixed
allowing us to enable the machine verifier by default with
EXPENSIVE_CHECKS enabled!
Differential Revision: https://reviews.llvm.org/D33696
llvm-svn: 304320
This is the equivalent of r304048 for ARM:
- Rewrite livein calculation to use the computeLiveIns() helper
function. This is slightly less efficient but easier to reason about
and doesn't unnecessarily add pristine and reserved registers[1]
- Zero the status register at the beginning of the loop to make sure it
has a defined value.
- Remove kill flags of values that need to stay alive throughout the loop.
[1] An upcoming commit of mine will tighten the MachineVerifier to catch
these.
llvm-svn: 304267
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
Summary:
Currently FPOWI defaults to Legal and LegalizeDAG.cpp turns Legal into Expand for this opcode because Legal is a "lie".
This patch changes the default for this opcode to Expand and removes the hack from LegalizeDAG.cpp. It also removes all the code in the targets that set this opcode to Expand themselves since they can just rely on the default.
Reviewers: spatel, RKSimon, efriedma
Reviewed By: RKSimon
Subscribers: jfb, dschuff, sbc100, jgravelle-google, nemanjai, javed.absar, andrew.w.kaylor, llvm-commits
Differential Revision: https://reviews.llvm.org/D33530
llvm-svn: 304215
Create a helper to deal with the common code for merging incoming values
together after they've been split during call lowering. There's likely
more stuff that can be commoned up here, but we'll leave that for later.
llvm-svn: 304143
Clang coerces structs into arrays, so it's a good idea to support them.
Most of the support boils down to getting the splitToValueTypes helper
to actually split types. We then use G_INSERT/G_EXTRACT to deal with the
parts.
llvm-svn: 304132
Currently getOptimalMemOpType returns i32 for large enough sizes without
checking for alignment, leading to poor code generation when misaligned accesses
aren't permitted as we generate a word store then later split it up into byte
stores. This means we inadvertantly go over the MaxStoresPerMemcpy limit and for
memset we splat the memset value into a word then immediately split it up
again.
Fix this by leaving it up to FindOptimalMemOpLowering to figure out which type
to use, but also fix a bug there where it wasn't correctly checking if
misaligned memory accesses are allowed.
Differential Revision: https://reviews.llvm.org/D33442
llvm-svn: 303990
Summary:
Thumb code generation is controlled by ARMSubtarget and the concrete
ThumbLETargetMachine and ThumbBETargetMachine are not needed.
Eric Christopher suggested removing the unneeded target machines in
https://reviews.llvm.org/D33287.
I think it still makes sense to keep separate TargetMachines for big and
little endian as we probably do not want to have different endianess for
difference functions in a single compilation unit. The MIPS backend has
two separate TargetMachines for big and little endian as well.
Reviewers: echristo, rengolin, kristof.beyls, t.p.northover
Reviewed By: echristo
Subscribers: aemerson, javed.absar, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D33318
llvm-svn: 303733
This patch adds missing scheds for Neon VLDx/VSTx instructions.
This will help one write schedulers easier/faster in the future for ARM sub-targets.
Existing models will not affected by this patch.
Reviewed by: Renato Golin, Diana Picus
Differential Revision: https://reviews.llvm.org/D33120
llvm-svn: 303717
Summary:
A temporary workaround for PR32780 - rematerialized instructions accessing the same promoted global through different constant pool entries.
The patch turns off the globals promotion optimization leaving all its code in place, so that it can be easily turned on once PR32780 is fixed.
Since this is a miscompilation issue causing generation of misbehaving code, and the problem is very subtle, the patch might be valuable enough to get into 4.0.1.
Reviewers: efriedma, jmolloy
Reviewed By: efriedma
Subscribers: aemerson, javed.absar, llvm-commits, rengolin, asl, tstellar
Differential Revision: https://reviews.llvm.org/D33446
llvm-svn: 303679
Re-applying now that PR32825 which was raised on the commit this fixed up is now known to have also been fixed by this commit.
Original commit message:
Multiple ldr pseudoinstructions with the same constant value will
reuse the same constant pool entry. However, if the constant pool
is explicitly flushed with a .ltorg directive, we should not try
to reference constants in the previous pool any longer, since they
may be out of range.
This fixes assembling hand-written assembler source which repeatedly
loads the same constant value, across a binary size larger than the
pc-relative fixup range for ldr instructions (4096 bytes). Such
assembler source already uses explicit .ltorg instructions to emit
constant pools with regular intervals. However if we try to reuse
constants emitted in earlier pools, they end up out of range.
This makes the output of the testcase match what binutils gas does
(prior to this patch, it would fail to assemble).
Differential Revision: https://reviews.llvm.org/D32847
llvm-svn: 303540
This reverts commit r302416. This was a fixup for r286006, which has now been reverted so this doesn't apply (either in concept or in code).
This commit itself has no problems, but the underlying issue it was fixing has now disappeared from the codebase.
llvm-svn: 303536
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
llvm-svn: 303360
It only failed on llvm-clang-x86_64-expensive-checks-win, probably
because the TableGen stuff hasn't been regenerated.
Requires a clean build.
llvm-svn: 303252
Doing this means that if an LEApcrel is used in two places we will rematerialize
instead of generating two MOVs. This is particularly useful for printfs using
the same format string, where we want to generate an address into a register
that's going to get corrupted by the call.
Differential Revision: https://reviews.llvm.org/D32858
llvm-svn: 303054
Doing this lets us hoist it out of loops, and I've also marked it as
rematerializable the same as the thumb1 and thumb2 counterparts.
It looks like it being marked as such was just a mistake, as the commit that
made that change only mentions LEApcrelJT and in thumb1 and thumb2 only the
LEApcrelJT instructions were marked as having side-effects, so it looks like
the intent was to only mark LEApcrelJT as having side-effects but LEApcrel was
accidentally marked as such also.
Differential Revision: https://reviews.llvm.org/D32857
llvm-svn: 303053
This is the same as r292827 for AArch64: we widen 8- and 16-bit ADD, SUB
and MUL to 32 bits since we only have TableGen patterns for 32 bits.
See the commit message for r292827 for more details.
At this point we could just remove some of the tests for regbankselect
and instruction-select, since we're not going to see any narrow
operations at those levels anymore. Instead I decided to update them
with G_ANYEXT/G_TRUNC operations, so we can validate the full sequences
generated by the legalizer.
llvm-svn: 302782
G_ANYEXT can be introduced by the legalizer when widening scalars. Add
support for it in the register bank info (same mapping as everything
else) and in the instruction selector.
When selecting it, we treat it as a COPY, just like G_TRUNC. On this
occasion we get rid of some assertions in selectCopy so we can reuse it.
This shouldn't be a problem at the moment since we're not supporting any
complicated cases (e.g. FPR, different register banks). We might want to
separate the paths when we do.
llvm-svn: 302778
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
Now both emitLeadingFence and emitTrailingFence take the instruction
itself, instead of taking IsLoad/IsStore pairs.
Instruction::mayReadFromMemory and Instrucion::mayWriteToMemory are used
for determining those two booleans.
The instruction argument is also useful for later D32763, in
emitTrailingFence. For emitLeadingFence, it seems to have cleaner
interface with the proposed change.
Differential Revision: https://reviews.llvm.org/D32762
llvm-svn: 302539
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
Statistic compile to always be 0 in release build so this compare would always return false. And in the debug builds Statistic are global variables and remember their values across pass runs. So this compare returns true anytime the pass runs after the first time it modifies something.
This was found after reviewing all usages of comparison operators on a Statistic object. We had some internal code that did a compare with a statistic that caused a mismatch in output between debug and release builds. So we did an audit out of paranoia.
llvm-svn: 302450
Multiple ldr pseudoinstructions with the same constant value will
reuse the same constant pool entry. However, if the constant pool
is explicitly flushed with a .ltorg directive, we should not try
to reference constants in the previous pool any longer, since they
may be out of range.
This fixes assembling hand-written assembler source which repeatedly
loads the same constant value, across a binary size larger than the
pc-relative fixup range for ldr instructions (4096 bytes). Such
assembler source already uses explicit .ltorg instructions to emit
constant pools with regular intervals. However if we try to reuse
constants emitted in earlier pools, they end up out of range.
This makes the output of the testcase match what binutils gas does
(prior to this patch, it would fail to assemble).
Differential Revision: https://reviews.llvm.org/D32847
llvm-svn: 302416
This is a step toward having statically allocated instruciton mapping.
We are going to tablegen them eventually, so let us reflect that in
the API.
NFC.
llvm-svn: 302316
This exposes a method in MachineFrameInfo that calculates
MaxCallFrameSize and calls it after instruction selection in the ARM
target.
This avoids
ARMBaseRegisterInfo::canRealignStack()/ARMFrameLowering::hasReservedCallFrame()
giving different answers in early/late phases of codegen.
The testcase shows a particular nasty example result of that where we
would fail to properly align an alloca.
Differential Revision: https://reviews.llvm.org/D32622
llvm-svn: 302303
This adds routines for reseting KnownBits to unknown, making the value all zeros or all ones. It also adds methods for querying if the value is zero, all ones or unknown.
Differential Revision: https://reviews.llvm.org/D32637
llvm-svn: 302262
Recently support was added for substituting one intruction for another by
negating or inverting the immediate, but ORR and ORN were missed so this patch
adds them.
This one is slightly different to the others in that ORN only exists in thumb,
so we only do the substitution in thumb.
Differential Revision: https://reviews.llvm.org/D32534
llvm-svn: 302224
Added the integer data processing intrinsics from ACLE v2.1 Chapter 9
but I have missed out the saturation_occurred intrinsics for now. For
the instructions that read and write the GE bits, a chain is included
and the only instruction that reads these flags (sel) is only
selectable via the implemented intrinsic.
Differential Revision: https://reviews.llvm.org/D32281
llvm-svn: 302126
Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
take attribute list indices. Most of these were only used from
BuildLibCalls, and doesNotAlias was only used to test or set if the
return value is malloc-like.
I'm happy to split the patch, but I think they are probably easier to
review when taken together.
This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
0: func attrs
1: retattrs
2...: arg attrs
Reviewers: chandlerc, pete, javed.absar
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D32811
llvm-svn: 302060
When we replaced the multiplicand the destination node might already exist.
When that happens the original gets CSEd and deleted. However, it's actually
used as the offset so nonsense is produced.
Should fix PR32726.
llvm-svn: 301983
I doubt anyone actually uses it, and I'm not even entirely convinced it exists
myself; but it is our default for "clang -arch armv6". Functionally, if it does
exist it's identical to the arm1176jz-f from LLVM's point of view (the
difference is apparently in the "Security Extensions").
llvm-svn: 301962
Emit and use the TableGen instruction selector for ARM. At the moment,
this allows us to remove the hand-written code for selecting G_SDIV and
G_UDIV.
Future commits will focus on increasing the code coverage for it and
removing more dead code from the current instruction selector.
llvm-svn: 301905
This eliminates many extra 'Idx' induction variables in loops over
arguments in CodeGen/ and Target/. It also reduces the number of places
where we assume that ReturnIndex is 0 and that we should add one to
argument numbers to get the corresponding attribute list index.
NFC
llvm-svn: 301666
Declare the ARMInstructionSelector in an anonymous namespace, to make it
more in line with the other targets which were migrated to this in
r299637 in order to avoid TableGen'erated headers being included in
non-GlobalISel builds.
llvm-svn: 301632
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
Fix a crash when trying to extend a value passed as a sign- or
zero-extended stack parameter. The cause of the crash was that we were
setting the size of the loaded value to 32 bits, and then tyring to
extend again to 32 bits.
This patch addresses the issue by also introducing a G_TRUNC after the
load. This will leave the unused bits to their original values set by
the caller, while being consistent about the types. For values that are
not extended, we just use a smaller load.
llvm-svn: 301531
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
We have to widen the operands to 32 bits and then we can either use
hardware division if it is available or lower to a libcall otherwise.
At the moment it is not enough to set the Legalizer action to
WidenScalar, since for libcalls it won't know what to do (it won't be
able to find what size to widen to, because it will find Libcall and not
Legal for 32 bits). To hack around this limitation, we request Custom
lowering, and as part of that we widen first and then we run another
legalizeInstrStep on the widened DIV.
llvm-svn: 301166
Add support for both targets with hardware division and without. For
hardware division we have to add support throughout the pipeline
(legalizer, reg bank select, instruction select). For targets without
hardware division, we only need to mark it as a libcall.
llvm-svn: 301164
When selecting a G_CONSTANT to a MOVi, we need the value to be an Imm
operand. We used to just leave the G_CONSTANT operand unchanged, which
works in some cases (such as the GEP offsets that we create when
referring to stack slots). However, in many other places the G_CONSTANTs
are created with CImm operands. This patch makes sure to handle those as
well, and to error out gracefully if in the end we don't end up with an
Imm operand.
Thanks to Oliver Stannard for reporting this issue.
llvm-svn: 301162
Summary:
Some targets need to be able to do more complex rendering than just adding an
operand or two to an instruction. For example, it may need to insert an
instruction to extract a subreg first, or it may need to perform an operation
on the operand.
In SelectionDAG, targets would create SDNode's to achieve the desired effect
during the complex pattern predicate. This worked because SelectionDAG had a
form of garbage collection that would take care of SDNode's that were created
but not used due to a later predicate rejecting a match. This doesn't translate
well to GlobalISel and the churn was wasteful.
The API changes in this patch enable GlobalISel to accomplish the same thing
without the waste. The API is now:
InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const;
where Root is the root of the match. The return value can be omitted to
indicate that the predicate failed to match, or a function with the signature
ComplexRendererFn can be returned. For example:
return OptionalComplexRendererFn(
[=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); });
adds two immediate operands to the rendered instruction. Immed and ShVal are
captured from the predicate function.
As an added bonus, this also reduces the amount of information we need to
provide to GIComplexOperandMatcher.
Depends on D31418
Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar
Reviewed By: ab
Subscribers: dberris, kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31761
llvm-svn: 301079
In addition to the original commit, tighten the condition for when to
pad empty functions to COFF Windows. This avoids running into problems
when targeting e.g. Win32 AMDGPU, which caused test failures when this
was committed initially.
llvm-svn: 301047
Empty functions can lead to duplicate entries in the Guard CF Function
Table of a binary due to multiple functions sharing the same RVA,
causing the kernel to refuse to load that binary.
We had a terrific bug due to this in Chromium.
It turns out we were already doing this for Mach-O in certain
situations. This patch expands the code for that in
AsmPrinter::EmitFunctionBody() and renames
TargetInstrInfo::getNoopForMachoTarget() to simply getNoop() since it
seems it was used for not just Mach-O anyway.
Differential Revision: https://reviews.llvm.org/D32330
llvm-svn: 301040
Otherwise there's some mismatch, and we'll either form an illegal type or an
illegal node.
Thanks to Eli Friedman for pointing out the problem with my original solution.
llvm-svn: 301036
DAG combine was mistakenly assuming that the step-up it was looking at was
always a doubling, but it can sometimes be a larger extension in which case
we'd crash.
llvm-svn: 301002
Select them as copies. We only select if both the source and the
destination are on the same register bank, so this shouldn't cause any
trouble.
llvm-svn: 300971
The condition in isSupportedType didn't handle struct/array arguments
properly. Fix the check and add a test to make sure we use the fallback
path in this kind of situation. The test deals with some common cases
where the call lowering should error out. There are still some issues
here that need to be addressed (tail calls come to mind), but they can
be addressed in other patches.
llvm-svn: 300967
Single-threaded fences aren't required to provide any synchronization with
other processing elements so there's no need for a DMB. They should still be a
barrier for compiler optimizations though.
llvm-svn: 300904
Before, we assumed that any ConstantInt offset was precisely the access width,
so we could use the "[rN]!" form. ISelLowering only ever created that kind, but
further simplification during combining could lead to unexpected constants and
incorrect codegen.
Should fix PR32658.
llvm-svn: 300878
This will become asan errors once the patch lands that poisons the
memory after free. The x86 change is a hack, but I don't see how to
solve this properly at the moment.
llvm-svn: 300867
ChangeSection incorrectly registers LastEMSInfo as belonging to the previous
section, not the current section. This happens to work when changing sections
using .section, as the previous section is set to the current section before
the call to ChangeSection, but not when using .popsection.
Differential Revision: https://reviews.llvm.org/D32225
llvm-svn: 300831
The hardware div feature refers only to Thumb, but because of its name
it is tempting to use it to check for hardware division in general,
which may cause problems in ARM mode. See https://reviews.llvm.org/D32005.
This patch adds "Thumb" to its name, to make its scope clear. One
notable place where I haven't made the change is in the feature flag
(used with -mattr), which is still hwdiv. Changing it would also require
changes in a lot of tests, including clang tests, and it doesn't seem
like it's worth the effort.
Differential Revision: https://reviews.llvm.org/D32160
llvm-svn: 300827
Re-commit after revert in r300668. Changed getMaxFPOffset() to a
more conservative heuristic instead of trying to be clever and missing
for some exotic calling conventions.
We need to reserve an emergency spill slot in cases with large argument
types that could overflow immediate offsets for FP relative address
calculations.
rdar://31317893
Differential Revision: https://reviews.llvm.org/D31643
llvm-svn: 300761
Move the BFI logic to computeKnownBitsForTargetNode, and delete
the redundant CMOV logic.
This is intended as a cleanup, but it's probably possible to construct
a case where moving the BFI logic allows more combines.
Differential Revision: https://reviews.llvm.org/D31795
llvm-svn: 300752
Support G_MUL, very similar to G_ADD and G_SUB. The only difference is
in the instruction selector, where we have to select either MUL or MULv5
depending on the target.
llvm-svn: 300665
In r300196 several methods were added to TarfetInstrInfo to access
data stored with call frame setup/destroy instructions. This change
replaces calls to getOperand with calls to such special methods in
ARM target.
Differential Revision: https://reviews.llvm.org/D32127
llvm-svn: 300655
We need to reserve an emergency spill slot in cases with large argument
types that could overflow immediate offsets for FP relative address
calculations.
rdar://31317893
Differential Revision: https://reviews.llvm.org/D31643
llvm-svn: 300639
In the assembler, we should emit build attributes based on the target
selected with command-line options. This matches the GNU assembler's
behaviour. We only do this for build attributes which describe the
hardware that is expected to be available, not the ones that describe
ABI compatibility.
This is done by moving some of the attribute emission code to
ARMTargetStreamer, so that it can be shared between the assembly and
code-generation code paths. Since the assembler only creates a
MCSubtargetInfo, not an ARMSubtarget, the code had to be changed to
check raw features, and not use the convenience functions in
ARMSubtarget.
If different attributes are later specified using the .eabi_attribute
directive, then they will take precedence, as happens when the same
.eabi_attribute is specified twice.
This must be enabled by an option, because we don't want to do this when
parsing inline assembly. The attributes would match the ones emitted at
the start of the file, so wouldn't actually change the emitted object
file, but the extra directives would be added to every inline assembly
block when emitting assembly, which we'd like to avoid.
The majority of the changes in the build-attributes.ll test are just
re-ordering the directives, because the hardware attributes are now
emitted before the ABI ones. However, I did fix one bug which I spotted:
Tag_CPU_arch_profile was not being emitted for v6M.
Differential revision: https://reviews.llvm.org/D31812
llvm-svn: 300547
For subtargets that use the custom lowering for divmod, e.g. gnueabi,
we used to check if the subtarget has hardware divide and then lower to
a div-mul-sub sequence if true, or to a libcall if false.
However, judging by the usage of hasDivide vs hasDivideInARMMode, it
seems that hasDivide only refers to Thumb. For instance, in the
ARMTargetLowering constructor, the code that specifies whether to use
libcalls for (S|U)DIV looks like this:
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
: Subtarget->hasDivideInARMMode();
In the case of divmod for arm-gnueabi, using only hasDivide() to
determine what to do means that instead of lowering to __aeabi_idivmod
to get the remainder, we lower to div-mul-sub and then further lower the
div to __aeabi_idiv. Even worse, if we have hardware divide in ARM but
not in Thumb, we generate a libcall instead of using it (this is not an
issue in practice since AFAICT none of the cores that we support have
hardware divide in ARM but not Thumb).
This patch fixes the code dealing with custom lowering to take into
account the mode (Thumb or ARM) when deciding whether or not hardware
division is available.
Differential Revision: https://reviews.llvm.org/D32005
llvm-svn: 300536
This avoids the confusing 'CS.paramHasAttr(ArgNo + 1, Foo)' pattern.
Previously we were testing return value attributes with index 0, so I
introduced hasReturnAttr() for that use case.
llvm-svn: 300367
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
llvm-svn: 300052
Use the same handling in the generic legalizer code as for the other
libcalls (G_FREM, G_FPOW).
Enable it on ARM for float and double so we can test it.
llvm-svn: 299931
This patch refactors and strengthens the type checks performed for interleaved
accesses. The primary functional change is to ensure that the interleaved
accesses have valid element types. The added test cases previously failed
because the element type is f128.
Differential Revision: https://reviews.llvm.org/D31817
llvm-svn: 299864
BIC is generally faster, and it can put the output in a different
register from the input.
We already do this in Thumb2 mode; not sure why the equivalent fix
never got applied to ARM mode.
Differential Revision: https://reviews.llvm.org/D31797
llvm-svn: 299803
Legalize to a libcall.
On this occasion, also start allowing soft float subtargets. For the
moment G_FREM is the only legal floating point operation for them.
llvm-svn: 299753
In LowerMUL, the chain information is not preserved for the new
created Load SDNode.
For example, if a Store alias with one of the operand of Mul.
The Load for that operand need to be scheduled before the Store.
The dependence is recorded in the chain of Store, in TokenFactor.
However, when lowering MUL, the SDNodes for the new Loads for
VMULL are not updated in the TokenFactor for the Store. Thus the
chain is not preserved for the lowered VMULL.
llvm-svn: 299701
Summary:
Host CPU detection now supports Kryo, so we need to recognize it in ARM
target.
Reviewers: mcrosier, t.p.northover, rengolin, echristo, srhines
Reviewed By: t.p.northover, echristo
Subscribers: aemerson
Differential Revision: https://reviews.llvm.org/D31775
llvm-svn: 299674
During the optimisation of jump tables in the constant island pass,
an extra ADD could be left over, now dead but not removed.
Differential Revision: https://reviews.llvm.org/D31389
llvm-svn: 299634
This is a generic combine enabled via target hook to reduce icmp logic as discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32401
It's likely that other targets will want to enable this hook for scalar transforms,
and there are probably other patterns that can use bitwise logic to reduce comparisons.
Note that we are missing an IR canonicalization for these patterns, and we will probably
prefer the pair-of-compares form in IR (shorter, more likely to fold).
Differential Revision: https://reviews.llvm.org/D31483
llvm-svn: 299542
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
Dont emit Mapping symbols for sections that contain only data.
Summary:
Dont emit mapping symbols for sections that contain only data.
Reviewers: rengolin, weimingz, kparzysz, t.p.northover, peter.smith
Reviewed By: t.p.northover
Patched by Shankar Easwaran <shankare@codeaurora.org>
Subscribers: alekseyshl, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D30724
llvm-svn: 299392
- we are now using immediate AsmOperands so that the range check functions are
tablegen'ed.
- Big bonus is that error messages become much more accurate, i.e. instead of a
useless "invalid operand" error message it will not say that the immediate
operand must in range [x,y], which is why regression tests needed updating.
More tablegen operand descriptions could probably benefit from using
immediateAsmOperand, but this is a first good step to get rid of most of the
nearly identical range check functions. I will address the remaining immediate
operands in next clean ups.
Differential Revision: https://reviews.llvm.org/D31333
llvm-svn: 299358
Follow up to D25691, this sets up the plumbing necessary to support vector demanded elements support in known bits calculations in target nodes.
Differential Revision: https://reviews.llvm.org/D31249
llvm-svn: 299201
This patch enables schedulers to specify instructions that
cannot be issued with any other instructions.
It also fixes BeginGroup/EndGroup.
Reviewed by: Andrew Trick
Differential Revision: https://reviews.llvm.org/D30744
llvm-svn: 298885
Summary:
The true and false operands for the CMOV are operands 0 and 1.
ARMISelLowering.cpp::computeKnownBits was looking at operands 1 and 2
instead. This can cause CMOV instructions to be incorrectly folded into
BFI if value set by the CMOV is another CMOV, whose known bits are
computed incorrectly.
This patch fixes the issue and adds a test case.
Reviewers: kristof.beyls, jmolloy
Subscribers: llvm-commits, aemerson, srhines, rengolin
Differential Revision: https://reviews.llvm.org/D31265
llvm-svn: 298624
including the amended (no UB anymore) fix for adding/subtracting -2147483648.
This reverts r298328 "[ARM] Revert r297443 and r297820."
and partially reverts r297842 "Revert "[Thumb1] Fix the bug when adding/subtracting -2147483648""
llvm-svn: 298417
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Summary:
To support negative immediates for certain arithmetic instructions, the
instruction is converted to the inverse instruction with a negated (or inverted)
immediate. For example, "ADD r0, r1, #FFFFFFFF" cannot be encoded as an ADD
instruction. However, "SUB r0, r1, #1" is equivalent.
These conversions are different from instruction aliases. An alias maps
several assembler instructions onto one encoding. A conversion, however, maps
an *invalid* instruction--e.g. with an immediate that cannot be represented in
the encoding--to a different (but equivalent) instruction.
Several instructions with negative immediates were being converted already, but
this was not systematically tested, nor did it cover all instructions.
This patch implements all possible substitutions for ARM, Thumb1 and
Thumb2 assembler and adds tests. It also adds a feature flag
(-mattr=+no-neg-immediates) to turn these substitutions off. This is
helpful for users who want their code to assemble to exactly what they
wrote.
Reviewers: t.p.northover, rovka, samparker, javed.absar, peter.smith, rengolin
Reviewed By: javed.absar
Subscribers: aadg, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D30571
llvm-svn: 298380
The glueless lowering of addc/adde in Thumb1 has known serious
miscompiles (see https://reviews.llvm.org/D31081), and r297820
causes an infinite loop for certain constructs. It's not
clear when they will be fixed, so let's just take them out
of the tree for now.
(I resolved a small conflict with r297453.)
llvm-svn: 298328
The special case of zero sized values was previously not handled correctly.
This patch handles this by not promoting if the size is zero.
Patch by Tim Neumann.
Differential Revision: https://reviews.llvm.org/D31116
llvm-svn: 298320
This commit adds a parameter that lets us pass in the calling convention
of the call to CallLowering::lowerCall. This allows us to handle
situations where the calling convetion of the callee is different from
that of the caller.
Differential Revision: https://reviews.llvm.org/D31039
llvm-svn: 298254
Let targets specialize the pass with the register class so we can get a
parameterless default constructor and can put the pass into the pass
registry to enable testing with -run-pass=.
llvm-svn: 298184
Fixing triple format in the tests added for the branch label fix for Thumb
Targets. Also recommitting previously approved patch, see
https://reviews.llvm.org/D30943.
Reviewed by: samparker
Differential Revision: https://reviews.llvm.org/D30987
llvm-svn: 298056
This allows the optimization to rearrange loads and stores more
aggressively. This doesn't really affect performance, but it helps
codesize.
Differential Revision: https://reviews.llvm.org/D30839
llvm-svn: 298021
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
In fact this default implementation should be the only implementation,
keep it virtual for now to accomodate targets that don't model flags
correctly.
Differential Revision: https://reviews.llvm.org/D30747
llvm-svn: 297980
If we got unlucky with register allocation and actual constpool placement, we
could end up producing a tTBB_JT with an index that's already been clobbered.
Technically, we might be able to fix this situation up with a MOV, but I think
the constant islands pass is complex enough without having to deal with more
weird edge-cases.
llvm-svn: 297871
Different MCInstrAnalysis classes for arm and thumb mode, each with
their own evaluateBranch implementation. I added a test case and
fixed the coff-relocations test to use '<label>:' rather than
'<label>' in the CHECK-LABEL entries, since the ones without the
colon would match branch targets. Might be worth noticing that
llvm-objdump does not lookup the relocation and thus assigns it a
target depending on the encoded immediate which #0, so it thinks it
branches to the next instruction.
Committed on behalf of Andre Vieira (avieira).
Differential Revision: https://reviews.llvm.org/D30943
llvm-svn: 297821
Enable the selection of the 64-bit signed multiply accumulate
instructions which operate on 16-bit operands. These are enabled for
ARMv5TE onwards for ARM and for V6T2 and other DSP enabled Thumb
architectures.
Differential Revision: https://reviews.llvm.org/D30044
llvm-svn: 297809
Summary:
Adds a new kind of MachineOperand: MO_Placeholder.
This operand must not appear in the MIR and only exists as a way of
creating an 'uninitialized' operand until a matcher function overwrites it.
Depends on D30046, D29712
Reviewers: t.p.northover, ab, rovka, aditya_nandakumar, javed.absar, qcolombet
Reviewed By: qcolombet
Subscribers: dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D30089
llvm-svn: 297782
Make MCSectionELF::AssociatedSection be a link to a symbol, because
that's how it works in the assembly, and use it in the asm printer.
llvm-svn: 297769
This instruction was missing from the list of opcodes that we check, so we were
hitting an llvm_unreachable in ARMMCCodeEmitter.cpp for the ARM MOVT
instruction, rather than the diagnostic that is emitted for the other MOVW/MOVT
instructions.
Differential revision: https://reviews.llvm.org/D30936
llvm-svn: 297739
Create nodes for smulwb and smulwt and move their selection from
DAGToDAG to DAG combine. smlawb and smlawt can then be selected
using tablegen. Added some helper functions to detect shift patterns
as well as a wrapper around SimplifyDemandBits. Added a couple of
extra tests.
Differential Revision: https://reviews.llvm.org/D30708
llvm-svn: 297716
Recommiting with compiler time improvements
Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 297695
We used to hit an unreachable in getRegBankFromRegClass when dealing with the
stack pointer. This commit adds support for the GPRsp reg class.
llvm-svn: 297621
Loop over the ARM decode tables; this is a clean-up to reduce some code
duplication.
Differential Revision: https://reviews.llvm.org/D30814
llvm-svn: 297608
ARMISD::ADD[CE] nodes, instead of the generic ISD::ADD[CE].
Summary:
This allows for some simplification because the combines
are no longer limited to just one go at the node before
it gets legalized into an ARM target-specific one.
Reviewers: jmolloy, rogfer01
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30401
llvm-svn: 297453
same as already done for ARM and Thumb2.
Reviewers: jmolloy, rogfer01, efriedma
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30400
llvm-svn: 297443
Minor cleanup in ARMInstrVFP.td: removed some FIXMEs and added a MC test for
vcmp that was actually missing.
Differential Revision: https://reviews.llvm.org/D30745
llvm-svn: 297376
The check for LSL #0 in an IT block was checking if operand 4 was zero, but
operand 4 is the condition code operand so it was actually checking for LSLEQ.
Fix this by checking operand 3, which really is the immediate operand, and add
some tests.
Differential Revision: https://reviews.llvm.org/D30692
llvm-svn: 297142
The original patch r296865 was reverted as it broke the chromium builds for
Android https://bugs.llvm.org/show_bug.cgi?id=32134, this patch reapplies
r296865 with a fix to make sure it doesn't cause the build regression.
The problem was that intrinsic selection on int_arm_get_fpscr was failing in
ISel this was because the code to manually select this intrinsic still thought
it was the version with no side-effects (INTRINSIC_WO_CHAIN) which is wrong as
it doesn't semantically match the definition in the tablegen code which says it
does have side-effects, I've fixed this by updating the intrinsic type to
INTRINSIC_W_CHAIN (has side-effects). I've also added a test for this based on
Hans original reproducer.
Differential Revision: https://reviews.llvm.org/D30645
llvm-svn: 297137
Summary: Previously, it had always been materialized as a push/pop sequence.
Reviewers: labrinea, jroelofs
Reviewed By: jroelofs
Subscribers: llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30648
llvm-svn: 297134
A bit more painful than G_INSERT because it was more widely used, but this
should simplify the handling of extract operations in most locations.
llvm-svn: 297100
This patch causes compile times for some patterns to explode. I have
a (large, unreduced) test case that slows down by more than 20x and
several test cases slow down by 2x. I'm sending some of the test cases
directly to Nirav and following up with more details in the review log,
but this should unblock anyone else hitting this.
llvm-svn: 296862
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation
as LastOp.
This patch fixes some cases where we would move stores to the wrong
insert point.
Re-commit with a fix to increment NumMove in the right place.
Differential Revision: https://reviews.llvm.org/D30124
llvm-svn: 296815
After r296750, we're able to match interleaved accesses having types wider than
128 bits. This patch updates the associated TTI costs.
Differential Revision: https://reviews.llvm.org/D29675
llvm-svn: 296751
This patch teaches (ARM|AArch64)ISelLowering.cpp to match illegal vector types
to interleaved access intrinsics as long as the types are multiples of the
vector register width. A "wide" access will now be mapped to multiple
interleave intrinsics similar to the way in which non-interleaved accesses with
illegal types are legalized into multiple accesses. I'll update the associated
TTI costs (in getInterleavedMemoryOpCost) as a follow-on.
Differential Revision: https://reviews.llvm.org/D29466
llvm-svn: 296750
Original commit message:
[ARM] Fix insert point for store rescheduling.
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation as
LastOp.
This patch fixes some cases where we would sink stores for no reason.
llvm-svn: 296718
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation as
LastOp.
This patch fixes some cases where we would sink stores for no reason.
Differential Revision: https://reviews.llvm.org/D30124
llvm-svn: 296708
This code starts from the high end of the sorted vector of offsets, and
works backwards: it tries to find contiguous offsets, process them, then
pops them from the end of the vector. Most of the code agrees with this
order of processing, but one loop doesn't: it instead processes elements
from the low end of the vector (which are nodes with unrelated offsets).
Fix that loop to process the correct elements.
This has a few implications. One, we don't incorrectly return early when
processing multiple groups of offsets in the same block (which allows
rescheduling prera-ldst-insertpt.mir). Two, we pick the correct insert
point for loads, so they're correctly sorted (which affects the
scheduling of vldm-liveness.ll). I think it might also impact some of
the heuristics slightly.
Differential Revision: https://reviews.llvm.org/D30368
llvm-svn: 296701
Lower i1, i8 and i16 call parameters by extending them before storing them on
the stack. Also make sure we encode the correct, extended size in the
corresponding memory operand, and that we compute the correct stack size in the
end.
The latter is a bit more complicated because we used to compute the stack size
in the getStackAddress method, based on the Size and Offset of the parameters.
However, if the last parameter is sign extended, we'd be using the wrong,
non-extended size, and we'd end up with a smaller stack than we need to hold the
extended value. Instead of hacking this up based on the value of Size in
getStackAddress, we move our stack size handling logic to assignArg, where we
have access to the CCState which knows everything we could possibly want to know
about the stack. This way we don't need to duplicate any knowledge or resort to
any ugly hacks.
On this same occasion, update the IRTranslator test to check the sizes of the
stores everywhere, not just for sign extended paramteres.
llvm-svn: 296631
This parsing code was incorrectly checking for invalid characters, so an
invalid instruction like:
msr spsr_w, r0
would be emitted as:
msr spsr_cxsf, r0
Differential revision: https://reviews.llvm.org/D30462
llvm-svn: 296607
This prevents generating stm r1!, {r0, r1} on Thumb1, where value
stored for r1 is UNKONWN.
Patch by Zhaoshi Zheng.
Differential Revision: https://reviews.llvm.org/D27910
llvm-svn: 296538
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296476
Lower i32, float and double parameters that need to live on the stack. This
boils down to creating some G_GEPs starting from the stack pointer and storing
the values there. During the process we also keep track of the stack size and
use the final value in the ADJCALLSTACKDOWN/UP instructions.
We currently assert for smaller types, since they usually require extensions.
They will be handled in a separate patch.
llvm-svn: 296473
In Thumb2, instructions which write to the PC are UNPREDICTABLE if they are in
an IT block but not the last instruction in the block.
Previously, we only diagnosed this for LDM instructions, this patch extends the
diagnostic to cover all of the relevant instructions.
Differential Revision: https://reviews.llvm.org/D30398
llvm-svn: 296459
The transform in question claims to be doing:
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
...starting in PerformADDCombineWithOperands(), but it wasn't actually checking for a setcc node
for the sext/zext patterns.
This is exactly the opposite of a transform I'd like to add to DAGCombiner's foldSelectOfConstants(),
so I was seeing infinite loops with my draft of a patch applied.
The changes in select_const.ll look positive (less instructions). The change in arm-and-tst-peephole.ll
is unrelated. We're changing the input IR in that test to preserve the intent of the test, but that's
not affected by this code change.
Differential Revision:
https://reviews.llvm.org/D30355
llvm-svn: 296389
Currently we handle this correctly in arm, but in thumb we don't which leads to
an unpredictable instruction being emitted for LSL #0 in an IT block and SP not
being permitted in some cases when it should be.
For the thumb2 LSL we can handle this by making LSL #0 an alias of MOV in the
.td file, but for thumb1 we need to handle it in checkTargetMatchPredicate to
get the IT handling right. We also need to adjust the handling of
MOV rd, rn, LSL #0 to avoid generating the 16-bit encoding in an IT block. We
should also adjust it to allow SP in the same way that it is allowed in
MOV rd, rn, but I haven't done that here because it looks like it would take
quite a lot of work to get right.
Additionally correct the selection of the 16-bit shift instructions in
processInstruction, where it was checking if the two registers were equal when
it should have been checking if they were low. It appears that previously this
code was never executed and the 16-bit encoding was selected by default, but
the other changes I've done here have somehow made it start being used.
Differential Revision: https://reviews.llvm.org/D30294
llvm-svn: 296342
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296252
FastISel wasn't checking the isFPOnlySP subtarget feature before emitting
double-precision operations, so it got completely invalid CodeGen for doubles
on Cortex-M4F.
The normal ISel testing wasn't spectacular either so I added a second RUN line
to improve that while I was in the area.
llvm-svn: 296031
Introduce a common ValueHandler for call returns and formal arguments, and
inherit two different versions for handling the differences (at the moment the
only difference is the way physical registers are marked as used).
llvm-svn: 295973
Add support for lowering calls with parameters than can fit into regs. Use the
same ValueHandler that we used for function returns, but rename it to match its
new, extended purpose.
llvm-svn: 295971
The ARMConstantIslandPass didn't have support for handling accesses to
constant island objects through ARM::t2LDRBpci instructions. This adds
support for that.
This fixes PR31997.
llvm-svn: 295964
The pass tries to fix a spill of LR that turns out to be unnecessary.
So it removes the tPOP but forgets to remove tPUSH.
This causes the stack be misaligned upon returning the function.
Thus, remove the tPUSH as well in this case.
Differential Revision: https://reviews.llvm.org/D30207
llvm-svn: 295816
This patch adds missing sched classes for Thumb2 instructions.
This has been missing so far, and as a consequence, machine
scheduler models for individual sub-targets have tended to
be larger than they needed to be. These patches should help
write schedulers better and faster in the future
for ARM sub-targets.
Reviewer: Diana Picus
Differential Revision: https://reviews.llvm.org/D29953
llvm-svn: 295811
This just adds the basic skeleton for supporting a new object file format.
All of the actual encoding will be implemented in followup patches.
Differential Revision: https://reviews.llvm.org/D26722
llvm-svn: 295803
PC isn't allowed in the source operand of t2MOVr, so change the register class
to one without PC. SP handling is slightly trickier and changes depending on if
we're in ARMv8, so do that in checkTargetMatchPredicate.
Differential Revision: https://reviews.llvm.org/D30199
llvm-svn: 295732
There used to be a check in the IRTranslator that prevented us from having to
deal with atomic loads/stores. That check has been removed in r294993 and the
AArch64 backend was updated accordingly. This commit does the same thing for the
ARM backend.
In general, in the ARM backend we introduce fences during the atomic expand
pass, so we don't have to worry about atomics, *except* for the 32-bit ARMv8
target, which handles atomics more like AArch64. Since we don't want to worry
about that yet, just bail out of instruction selection if we find any atomic
loads.
llvm-svn: 295662
Removed the HasT2ExtractPack feature and replaced its references
with HasDSP. This then allows the Thumb2 extend instructions to be
selected for ARMv8M +dsp. These instruction descriptions have also
been refactored and more target tests have been added for their isel.
Differential Revision: https://reviews.llvm.org/D29623
llvm-svn: 295452
Add some asserts to make sure we're using the mappings that we think we're
using. This is to keep us from accidentally breaking functionality while moving
to TableGen'erated mappings.
llvm-svn: 295441