Summary:
This patch teaches PostDominatorTree about infinite loops. It is built on top of D29705 by @dberlin which includes a very detailed motivation for this change.
What's new is that the patch also teaches the incremental updater how to deal with reverse-unreachable regions and how to properly maintain and verify tree roots. Before that, the incremental algorithm sometimes ended up preserving reverse-unreachable regions after updates that wouldn't appear in the tree if it was constructed from scratch on the same CFG.
This patch makes the following assumptions:
- A sequence of updates should produce the same tree as a recalculating it.
- Any sequence of the same updates should lead to the same tree.
- Siblings and roots are unordered.
The last two properties are essential to efficiently perform batch updates in the future.
When it comes to the first one, we can decide later that the consistency between freshly built tree and an updated one doesn't matter match, as there are many correct ways to pick roots in infinite loops, and to relax this assumption. That should enable us to recalculate postdominators less frequently.
This patch is pretty conservative when it comes to incremental updates on reverse-unreachable regions and ends up recalculating the whole tree in many cases. It should be possible to improve the performance in many cases, if we decide that it's important enough.
That being said, my experiments showed that reverse-unreachable are very rare in the IR emitted by clang when bootstrapping clang. Here are the statistics I collected by analyzing IR between passes and after each removePredecessor call:
```
# functions: 52283
# samples: 337609
# reverse unreachable BBs: 216022
# BBs: 247840796
Percent reverse-unreachable: 0.08716159869015269 %
Max(PercRevUnreachable) in a function: 87.58620689655172 %
# > 25 % samples: 471 ( 0.1395104988314885 % samples )
... in 145 ( 0.27733680163724345 % functions )
```
Most of the reverse-unreachable regions come from invalid IR where it wouldn't be possible to construct a PostDomTree anyway.
I would like to commit this patch in the next week in order to be able to complete the work that depends on it before the end of my internship, so please don't wait long to voice your concerns :).
Reviewers: dberlin, sanjoy, grosser, brzycki, davide, chandlerc, hfinkel
Reviewed By: dberlin
Subscribers: nhaehnle, javed.absar, kparzysz, uabelho, jlebar, hiraditya, llvm-commits, dberlin, david2050
Differential Revision: https://reviews.llvm.org/D35851
llvm-svn: 310940
Shrink-wrapping uses post-dominators to find a restore point that
post-dominates all the uses of CSR / stack.
The way dominator trees are modeled in LLVM today is that unreachable
blocks are not present in a generic dominator tree, so, an unreachable node is
dominated by anything: include/llvm/Support/GenericDomTree.h:467.
Since for post-dominators, a no-return block is considered
"unreachable", calling findNearestCommonDominator on an unreachable node
A and a non-unreachable node B, will return B, which can be false. If we
find such node, we bail out since there is no good restore point
available.
rdar://problem/30186931
llvm-svn: 303130
Tail merge was making the assumption that a layout successor or
predecessor was always a cfg successor/predecessor. Remove that
assumption. Changes to tests are necessary because the errant cfg edges
were preventing optimizations.
llvm-svn: 273700
Currently, when edge weights are assigned to edges that are created when lowering switch statement, the weight on the edge to default statement (let's call it "default weight" here) is not considered. We need to distribute this weight properly. However, without value profiling, we have no idea how to distribute it. In this patch, I applied the heuristic that this weight is evenly distributed to successors.
For example, given a switch statement with cases 1,2,3,5,10,11,20, and every edge from switch to each successor has weight 10. If there is a binary search tree built to test if n < 10, then its two out-edges will have weight 4x10+10/2 = 45 and 3x10 + 10/2 = 35 respectively (currently they are 40 and 30 without considering the default weight). Each distribution (which is 5 here) will be stored in each SwitchWorkListItem for further distribution.
There are some exceptions:
For a jump table header which doesn't have any edge to default statement, we don't distribute the default weight to it.
For a bit test header which covers a contiguous range and hence has no edges to default statement, we don't distribute the default weight to it.
When the branch checks a single value or a contiguous range with no edge to default statement, we don't distribute the default weight to it.
In other cases, the default weight is evenly distributed to successors.
Differential Revision: http://reviews.llvm.org/D12418
llvm-svn: 246522
In particular, this preserves the kill flag, which allows the Thumb2 cbn?z
optimization to be applied in cases where a branch has been re-created after
the live variables analysis pass, e.g. by the machine block placement pass.
This appears to be low risk; a number of other targets seem to already be
doing something similar, e.g. AArch64, PowerPC.
Differential Revision: http://reviews.llvm.org/D9184
llvm-svn: 235639
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.
When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.
This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.
I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.
rdar://problem/16227836
llvm-svn: 209883
This commit only handles IfConvertTriangle. To update edge weights
of a successor, one interface is added to MachineBasicBlock:
/// Set successor weight of a given iterator.
setSuccWeight(succ_iterator I, uint32_t weight)
An existing testing case test/CodeGen/Thumb2/v8_IT_5.ll is updated,
since we now correctly update the edge weights, the cold block
is placed at the end of the function and we jump to the cold block.
llvm-svn: 200428
By default, the behavior of IT block generation will be determinated
dynamically base on the arch (armv8 vs armv7). This patch adds backend
options: -arm-restrict-it and -arm-no-restrict-it. The former one
restricts the generation of IT blocks (the same behavior as thumbv8) for
both arches. The later one allows the generation of legacy IT block (the
same behavior as ARMv7 Thumb2) for both arches.
Clang will support -mrestrict-it and -mno-restrict-it, which is
compatible with GCC.
llvm-svn: 194592