In D41587, @mssimpso discovered that the order of some patterns for
AArch64 was sub-optimal. I thought a bit about how we could avoid that
case in the future. I do not think there is a need for evaluating all
patterns for now. But this patch adds an extra (expensive) check, that
evaluates the latencies of all patterns, and ensures that the latency
saved decreases for subsequent patterns.
This catches the sub-optimal order fixed in D41587, but I am not
entirely happy with the check, as it only applies to sub-optimal
patterns seen while building with EXPENSIVE_CHECKS on. It did not
discover any other sub-optimal pattern ordering.
Reviewers: Gerolf, spatel, mssimpso
Reviewed By: Gerolf, mssimpso
Differential Revision: https://reviews.llvm.org/D41766
llvm-svn: 323873
This version of the patch fixes an off-by-one error causing PR34596. We
do not need to use std::next(BlockIter) when calling updateDepths, as
BlockIter already points to the next element.
Original commit message:
> For large basic blocks with lots of combinable instructions, the
> MachineTraceMetrics computations in MachineCombiner can dominate the compile
> time, as computing the trace information is quadratic in the number of
> instructions in a BB and it's relevant successors/predecessors.
> In most cases, knowing the instruction depth should be enough to make
> combination decisions. As we already iterate over all instructions in a basic
> block, the instruction depth can be computed incrementally. This reduces the
> cost of machine-combine drastically in cases where lots of instructions
> are combined. The major drawback is that AFAIK, computing the critical path
> length cannot be done incrementally. Therefore we only compute
> instruction depths incrementally, for basic blocks with more
> instructions than inc_threshold. The -machine-combiner-inc-threshold
> option can be used to set the threshold and allows for easier
> experimenting and checking if using incremental updates for all basic
> blocks has any impact on the performance.
>
> Reviewers: sanjoy, Gerolf, MatzeB, efriedma, fhahn
>
> Reviewed By: fhahn
>
> Subscribers: kiranchandramohan, javed.absar, efriedma, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D36619
llvm-svn: 313751
This caused PR34596.
> [MachineCombiner] Update instruction depths incrementally for large BBs.
>
> Summary:
> For large basic blocks with lots of combinable instructions, the
> MachineTraceMetrics computations in MachineCombiner can dominate the compile
> time, as computing the trace information is quadratic in the number of
> instructions in a BB and it's relevant successors/predecessors.
>
> In most cases, knowing the instruction depth should be enough to make
> combination decisions. As we already iterate over all instructions in a basic
> block, the instruction depth can be computed incrementally. This reduces the
> cost of machine-combine drastically in cases where lots of instructions
> are combined. The major drawback is that AFAIK, computing the critical path
> length cannot be done incrementally. Therefore we only compute
> instruction depths incrementally, for basic blocks with more
> instructions than inc_threshold. The -machine-combiner-inc-threshold
> option can be used to set the threshold and allows for easier
> experimenting and checking if using incremental updates for all basic
> blocks has any impact on the performance.
>
> Reviewers: sanjoy, Gerolf, MatzeB, efriedma, fhahn
>
> Reviewed By: fhahn
>
> Subscribers: kiranchandramohan, javed.absar, efriedma, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D36619
llvm-svn: 313213
Summary:
For large basic blocks with lots of combinable instructions, the
MachineTraceMetrics computations in MachineCombiner can dominate the compile
time, as computing the trace information is quadratic in the number of
instructions in a BB and it's relevant successors/predecessors.
In most cases, knowing the instruction depth should be enough to make
combination decisions. As we already iterate over all instructions in a basic
block, the instruction depth can be computed incrementally. This reduces the
cost of machine-combine drastically in cases where lots of instructions
are combined. The major drawback is that AFAIK, computing the critical path
length cannot be done incrementally. Therefore we only compute
instruction depths incrementally, for basic blocks with more
instructions than inc_threshold. The -machine-combiner-inc-threshold
option can be used to set the threshold and allows for easier
experimenting and checking if using incremental updates for all basic
blocks has any impact on the performance.
Reviewers: sanjoy, Gerolf, MatzeB, efriedma, fhahn
Reviewed By: fhahn
Subscribers: kiranchandramohan, javed.absar, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D36619
llvm-svn: 312719
Summary:
This change enables frame pointer elimination in non-leaf functions.
The -fomit-frame-pointer option still needs to be used when compiling
via clang (or an equivalent method of not setting the
'no-frame-pointer-elim*' function attributes if generating llvm IR via
some other method) to take advantage of this optimization.
This change should be NFC when compiling via clang without
-fomit-frame-pointer.
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, tberghammer, qcolombet, llvm-commits, danalbert, mcrosier, srhines
Differential Revision: http://reviews.llvm.org/D17730
llvm-svn: 262495