I split them in r240319 because I thought they are different enough
that we should treat them as different types. It turned out that
that was not a good idea. They are so similar that we ended up having
many duplicate code.
llvm-svn: 240706
Only SectionChunk can be dead-stripped. Previously,
all types of chunks implemented these functions,
but their functions were blank.
Likewise, only DefinedRegular and DefinedCOMDAT symbols
can be dead-stripped. markLive() function was implemented
for other symbol types, but they were blank.
I started thinking that the change I made in r240319 was
a mistake. I separated DefinedCOMDAT from DefinedRegular
because I thought that would make the code cleaner, but now
we want to handle them as the same type here. Maybe we
should roll it back.
This change should improve readability a bit as this removes
some dubious uses of reinterpret_cast. Previously, we
assumed that all COMDAT chunks are actually SectionChunks,
which was not very obvious.
llvm-svn: 240675
The change I made in r240620 was not correct. If a symbol foo is
defined, and if you use __imp_foo, __imp_foo symbol is automatically
defined as a pointer (not just an alias) to foo.
Now that we need to create a chunk for automatically-created symbols.
I defined LocalImportChunk class for them.
llvm-svn: 240622
Getting an iterator to the relocation table is very hot operation
in the linker. We do that not only to apply relocations but also
to mark live sections and to do ICF.
libObject's interface is slow. By caching pointers to the first
relocation table entries makes the linker 6% faster to self-link.
We probably need to fix libObject as well.
llvm-svn: 240603
Identical COMDAT Folding (ICF) is an optimization to reduce binary
size by merging COMDAT sections that contain the same metadata,
actual data and relocations. MSVC link.exe and many other linkers
have this feature. LLD achieves on per with MSVC in terms produced
binary size with this patch.
This technique is pretty effective. For example, LLD's size is
reduced from 64MB to 54MB by enaling this optimization.
The algorithm implemented in this patch is extremely inefficient.
It puts all COMDAT sections into a set to identify duplicates.
Time to self-link with/without ICF are 3.3 and 320 seconds,
respectively. So this option roughly makes LLD 100x slower.
But it's okay as I wanted to achieve correctness first.
LLD is still able to link itself with this optimization.
I'm going to make it more efficient in followup patches.
Note that this optimization is *not* entirely safe. C/C++ require
different functions have different addresses. If your program
relies on that property, your program wouldn't work with ICF.
However, it's not going to be an issue on Windows because MSVC
link.exe turns ICF on by default. As long as your program works
with default settings (or not passing /opt:noicf), your program
would work with LLD too.
llvm-svn: 240519
Chunks are basically unnamed chunks of bytes, and we don't like
to give them names. However, for logging or debugging, we want to
know symbols names of functions for COMDAT chunks. (For example,
we want to print out "we have removed unreferenced COMDAT section
which contains a function FOOBAR.")
This patch is to do that.
llvm-svn: 240484
PE/COFF executables/DLLs usually contain data which is called
base relocations. Base relocations are a list of addresses that
need to be fixed by the loader if load-time relocation is needed.
Base relocations are in .reloc section.
We emit one base relocation entry for each IMAGE_REL_AMD64_ADDR64
relocation.
In order to save disk space, base relocations are grouped by page.
Each group is called a block. A block starts with a 32-bit page
address followed by 16-bit offsets in the page. That is more
efficient representation of addresses than just an array of 32-bit
addresses.
llvm-svn: 239710
isRoot, isLive and markLive functions are called very frequently.
Previously, they were virtual functions. This patch make them
non-virtual.
Also this patch checks chunk liveness before calling its mark().
Previously, we did that at beginning of markLive(), so the virtual
function would return immediately if it's live. That was inefficient.
llvm-svn: 239458
I don't know what the right thing to do here, but at least 1 does
not seem like a correct value. If we do not align common chunks at
all, a small program which calls puts() from global dtors crashes
mysteriously in a kernel32's function.
I believe the crash was caused by symbols overlapping each other,
and my guess is that alignment has something to do with that, but
I am not 100% sure. Needs investigating.
llvm-svn: 239280
Previously, half of the constructor for .idata contents was in Chunks.cpp
and the rest was in Writer.cpp. This patch moves the latter to Chunks.cpp.
Now IdataContents class manages everything for .idata section.
llvm-svn: 239230
In this design, Chunk is the only thing that knows how to write
its contents to output file as well as how to apply relocations
there. The writer shouldn't know about the details.
llvm-svn: 239216
Symbols exported by DLLs can be imported not by name but by
small number or ordinal. Usually, symbols have both ordinals
and names, and in that case ordinals are called "hints" and
used by the loader as hints.
However, symbols can have only ordinals. They are called
import-by-ordinal symbols. You need to manage ordinals by hand
so that they will never change if you choose to use the feature.
But it's supposed to make dynamic linking faster because
it needs no string comparison. Not sure if that claim still
stands in year 2015, though. Anyways, the feature exists,
and this patch implements that.
llvm-svn: 238780
I'm adding ordinal-only (nameless) imports to the import table.
The chunk for that type is going to be different from LookupChunk.
Without this change, we cannot add objects of the new type to the
vectors.
llvm-svn: 238779
Currently we set the field to zero, but as per the spec, we should
set numbers we read from import library files. The loader uses the
values as starting offsets for binary search when looking up imported
symbols from DLL.
llvm-svn: 238562
Previously Writer directly handles writes to a file.
Chunks needed to give Writer a continuous chunk of memory.
That was inefficent if you construct data in chunks because
it would require two memory copies (one to construct a chunk
and the other is to write that to a file).
This patch teaches chunk to write directly to a file.
From readability point of view, this is also good because
you no longer have to call hasData() before calling getData().
llvm-svn: 238464
This is an initial patch for a section-based COFF linker.
The patch has 2300 lines of code including comments and blank lines.
Before diving into details, you want to start from reading README
because it should give you an overview of the design.
All important things are written in the README file, so I write
summary here.
- The linker is already able to self-link on Windows.
- It's significantly faster than the existing implementation.
The existing one takes 5 seconds to link LLD on my machine,
while the new one only takes 1.2 seconds, even though the new
one is not multi-threaded yet. (And a proof-of-concept multi-
threaded version was able to link it in 0.5 seconds.)
- It uses much less memory (250MB vs. 2GB virtual memory space
to self-host).
- IMHO the new code is much simpler and easier to read than
the existing PE/COFF port.
http://reviews.llvm.org/D10036
llvm-svn: 238458