restrictions. The note's not really on the right place given its wording,
but putting a second note on the call site (or muddying the wording) doesn't
appeal.
There are corner cases where this can be wrong, but I'm not concerned.
llvm-svn: 112950
instantiating the parameters. In a perfect world, this wouldn't
matter, and compilers are free to instantiate in any order they
want. However, every other compiler seems to instantiate the return
type first, and some code (in this case, Boost.Polygon) depends on
this and SFINAE to avoid instantiating something that shouldn't be
instantiated.
We could fight this battle, and insist that Clang is allowed to do
what it does, but it's not beneficial: it's more predictable to
instantiate this way, in source order. When we implement
late-specified return types, we'll need to instantiate the return type
last when it was late-specified, hence the FIXME.
We now compile Boost.Polygon properly.
llvm-svn: 112561
deduction where the parameter is a function reference, function
pointer, or member function pointer and the argument is an overloaded
function. Fixes <rdar://problem/8360106>, a template argument
deduction issue found by Boost.Filesystem.
llvm-svn: 112523
an object of type I, if the current access target is protected
when named in a class N, consider the friends of the classes P
where I <= P <= N and where a notional member of N would be
non-forbidden in P.
llvm-svn: 112358
templates when only the declaration is in scope. This requires deferring the
instantiation to be lazy, and ensuring the definition is required for that
translation unit. We re-use the existing pending instantiation queue,
previously only used to track implicit instantiations which were required to be
lazy. Fixes PR7979.
A subsequent change will rename *PendingImplicitInstantiations to
*PendingInstatiations for clarity given its broader role.
llvm-svn: 112037
only form pointers-to-member if the expression has the appropriate
form. This avoids assertions later on on invalid code, but also
allows us to properly resolve mixed-staticity overloads.
llvm-svn: 111987
qua templates. The current fix suppresses the access check entirely
in this case; to do better, we'd need to be able to say that a
particular lookup result came from a particular injected class name,
which is not easy to do with the current representation of LookupResult.
This is on my known-problems list.
llvm-svn: 111009
that actually refer to the same underlying type, it is not an
ambiguity; add uniquing support based on the canonical type of type
declarations. Fixes <rdar://problem/8296180>.
llvm-svn: 110806
implicit conversion sequences. In particular, model the "standard
conversion" from a class to its own type (or a base type) directly as
a standard conversion in the normal path *without* trying to determine
if there is a valid copy constructor. This appears to match the intent
of C++ [over.best.ics]p6 and more closely matches GCC and EDG.
As part of this, model non-lvalue reference initialization via
user-defined conversion in overloading the same way we handle it in
InitializationSequence, separating the "general user-defined
conversion" and "conversion to compatible class type" cases.
The churn in the overload-call-copycon.cpp test case is because the
test case was originally wrong; it assumed that we should do more
checking for copy constructors that we actually should, which affected
overload resolution.
Fixes PR7055. Bootstrapped okay.
llvm-svn: 110773
just means "not a function type", not "not a function type or void". This
changes behavior slightly, but generally in a way which accepts more code.
llvm-svn: 110303
at -O0. The only change from the previous patch is that we don't try
to generate virtual method thunks for an available_externally
function.
llvm-svn: 108230
-O0, since we won't be using the definitions for anything anyway. For
lib/System/Path.o when built in Debug+Asserts mode, this leads to a 4%
improvement in compile time (and suppresses 440 function bodies).
<rdar://problem/7987644>
llvm-svn: 108156
typedefs won't have the same canonical declaration (since they are
distinct), so we need to check for this case specifically. Fixes
<rdar://problem/8018262>.
llvm-svn: 107833
CXXConstructExpr/CXXTemporaryObjectExpr/CXXNewExpr as
appropriate. Fixes PR7556, and provides a slide codegen improvement
when copy-initializing a POD class type from a value-initialized
temporary. Previously, we weren't eliding the copy.
llvm-svn: 107827
self-host. Hopefully these results hold up on different platforms.
I tried to keep the GNU ObjC runtime happy, but it's hard for me to test.
Reimplement how clang generates IR for exceptions. Instead of creating new
invoke destinations which sequentially chain to the previous destination,
push a more semantic representation of *why* we need the cleanup/catch/filter
behavior, then collect that information into a single landing pad upon request.
Also reorganizes how normal cleanups (i.e. cleanups triggered by non-exceptional
control flow) are generated, since it's actually fairly closely tied in with
the former. Remove the need to track which cleanup scope a block is associated
with.
Document a lot of previously poorly-understood (by me, at least) behavior.
The new framework implements the Horrible Hack (tm), which requires every
landing pad to have a catch-all so that inlining will work. Clang no longer
requires the Horrible Hack just to make exceptions flow correctly within
a function, however. The HH is an unfortunate requirement of LLVM's EH IR.
llvm-svn: 107631
This is more targeted, as it simply provides toggle actions for the parser to
turn access checking on and off. We then use these to suppress access checking
only while we parse the template-id (included scope specifier) of an explicit
instantiation and explicit specialization of a class template. The
specialization behavior is an extension, as it seems likely a defect that the
standard did not exempt them as it does explicit instantiations.
This allows the very common practice of specializing trait classes to work for
private, internal types. This doesn't address instantiating or specializing
function templates, although those apparently already partially work.
The naming and style for the Action layer isn't my favorite, comments and
suggestions would be appreciated there.
llvm-svn: 106993
introduced by using decls are hidden even if their template parameter lists
or return types differ from the "overriding" declaration.
Propagate using shadow declarations around more effectively when looking up
template-ids. Reperform lookup for template-ids in member expressions so that
access control is properly set up.
Fix some number of latent bugs involving template-ids with totally invalid
base types. You can only actually get these with a scope specifier, since
otherwise the template-id won't parse as a template-id.
Fixes PR7384.
llvm-svn: 106093
a member template, and you try to call the member template with an explicit
template argument. See PR7247
For example, this downgrades the error to a warning in:
template<typename T> struct set{};
struct Value {
template<typename T>
void set(T value) {
}
};
void foo() {
Value v;
v.set<double>(3.2); // Warning here.
}
llvm-svn: 105518
the x86-64 __va_list_tag with this attribute. The attribute causes the
affected type to behave like a fundamental type when considered by ADL.
(x86-64 is the only target we currently provide with a struct-based
__builtin_va_list)
Fixes PR6762.
llvm-svn: 104941
template names. We were completely missing naming classes for many unqualified
lookups, but this didn't trigger code paths that need it. This removes part of
an optimization that re-uses the template name lookup done by the parser to
determine if explicit template arguments actually form a template-id.
Unfortunately the technique for avoiding the duplicate lookup lost needed data
such as the class context in which the lookup succeeded.
llvm-svn: 104117
Revert much of the implementation of C++98/03 [temp.friend]p5 in
r103943 and its follow-ons r103948 and r103952. While our
implementation was technically correct, other compilers don't seem to
implement this paragraph (which forces the instantiation of friend
functions defined in a class template when a class template
specialization is instantiated), and doing so broke a bunch of Boost
libraries.
Since this behavior has changed in C++0x (which instantiates the
friend function definitions when they are used), we're going to skip
the nowhere-implemented C++98/03 semantics and go straight to the
C++0x semantics.
This commit is a band-aid to get Boost up and running again. It
doesn't really fix PR6952 (which this commit un-fixes), but it does
deal with the way Boost.Units abuses this particular paragraph.
llvm-svn: 104014
within class templates be instantiated along with each class template
specialization, even if the functions are not used. Do so, as a baby
step toward PR6952.
llvm-svn: 103943
member function (default constructor, copy constructor, copy
assignment operator, destructor), emit a note showing where that
implicit definition was required.
llvm-svn: 103619
referenced unless we see one of them defined (or the key function
defined, if it as one) or if we need the vtable for something. Fixes
PR7114.
llvm-svn: 103497
explicit instantiations of template. C++0x clarifies the intent
(they're ill-formed in some cases; see [temp.explicit] for
details). However, one could squint at the C++98/03 standard and
conclude they are permitted, so reduce the error to a warning
(controlled by -Wc++0x-compat) in C++98/03 mode.
llvm-svn: 103482
specific message that includes the template arguments, e.g.,
test/SemaTemplate/overload-candidates.cpp:27:20: note: candidate template
ignored: substitution failure [with T = int *]
typename T::type get_type(const T&); // expected-note{{candidate ...
^
llvm-svn: 103348
many/too few arguments, use the same diagnostic we use for arity
mismatches in non-templates (but note that it's a function template).
llvm-svn: 103341
conflicting deduced template argument values, give a more specific
reason along with those values, e.g.,
test/SemaTemplate/overload-candidates.cpp:4:10: note: candidate template
ignored: deduced conflicting types for parameter 'T' ('int' vs. 'long')
const T& min(const T&, const T&);
^
llvm-svn: 103339
assignment operators.
Previously, Sema provided type-checking and template instantiation for
copy assignment operators, then CodeGen would synthesize the actual
body of the copy constructor. Unfortunately, the two were not in sync,
and CodeGen might pick a copy-assignment operator that is different
from what Sema chose, leading to strange failures, e.g., link-time
failures when CodeGen called a copy-assignment operator that was not
instantiation, run-time failures when copy-assignment operators were
overloaded for const/non-const references and the wrong one was
picked, and run-time failures when by-value copy-assignment operators
did not have their arguments properly copy-initialized.
This implementation synthesizes the implicitly-defined copy assignment
operator bodies in Sema, so that the resulting ASTs encode exactly
what CodeGen needs to do; there is no longer any special code in
CodeGen to synthesize copy-assignment operators. The synthesis of the
body is relatively simple, and we generate one of three different
kinds of copy statements for each base or member:
- For a class subobject, call the appropriate copy-assignment
operator, after overload resolution has determined what that is.
- For an array of scalar types or an array of class types that have
trivial copy assignment operators, construct a call to
__builtin_memcpy.
- For an array of class types with non-trivial copy assignment
operators, synthesize a (possibly nested!) for loop whose inner
statement calls the copy constructor.
- For a scalar type, use built-in assignment.
This patch fixes at least a few tests cases in Boost.Spirit that were
failing because CodeGen picked the wrong copy-assignment operator
(leading to link-time failures), and I suspect a number of undiagnosed
problems will also go away with this change.
Some of the diagnostics we had previously have gotten worse with this
change, since we're going through generic code for our
type-checking. I will improve this in a subsequent patch.
llvm-svn: 102853
specializations, substitute the deduced template arguments and check
the resulting substitution before concluding that template argument
deduction succeeds. This marvelous little fix makes a bunch of
Boost.Spirit tests start working.
llvm-svn: 102601
template argument deduction or (more importantly) the final substitution
required by such deduction. Makes access control magically work in these
cases.
Fixes PR6967.
llvm-svn: 102572
way that C does. Among other differences, elaborated type specifiers
are defined to skip "non-types", which, as you might imagine, does not
include typedefs. Rework our use of IDNS masks to capture the semantics
of different kinds of declarations better, and remove most current lookup
filters. Removing the last remaining filter is more complicated and will
happen in a separate patch.
Fixes PR 6885 as well some spectrum of unfiled bugs.
llvm-svn: 102164