simplify and commonize some of the asmprinter logic for globals.
This also avoids printing the MCSection for .zerofill, which broke
the llvm-gcc build.
llvm-svn: 93843
1. TargetLoweringObjectFileMachO should decide if something
goes in zerofill instead of having every target do it.
2. TargetLoweringObjectFileMachO should assign said symbols to
the right MCSection, the asmprinters should just emit to the
right section.
3. Since all zerofill stuff goes through mcstreamer anymore,
MAI can have a bool "haszerofill" instead of having the textual
directive to emit.
llvm-svn: 93838
to Mangler. Now MCSymbol just decides whether to slap quotes around
a symbol when printing it.
This also fixes some weirdness where two MCSymbols could be created
for the same symbol, if one needed to be mangled and got mangled to
the other one.
llvm-svn: 93690
instead of returning it in an std::string. Based on this change:
1. Change TargetLoweringObjectFileCOFF::getCOFFSection to take a StringRef
2. Change a bunch of targets to call makeNameProper with a smallstring,
making several of them *much* more efficient.
3. Rewrite Mangler::makeNameProper to not build names and then prepend
prefixes, not use temporary std::strings, and to avoid other crimes.
llvm-svn: 93298
U lib/CodeGen/AsmPrinter/DwarfException.cpp
U lib/CodeGen/AsmPrinter/DwarfException.h
--- Reverse-merging r82274 into '.':
U lib/Target/TargetLoweringObjectFile.cpp
G lib/CodeGen/AsmPrinter/DwarfException.cpp
These revisions were breaking everything.
llvm-svn: 82396
internal, they shouldn't use the indirect pointer stuff. In the case of
throw_rethrow_test, it was marked as 'internal' and calculated its own offset to
its contents.
llvm-svn: 82354
into the __DATA section. At launch time, dyld has to update most of the section
to fix up the type info pointers. It's better to place it into the __TEXT
section and use pc-rel indirect pointer encodings. Similar to the personality
routine.
llvm-svn: 82274
Eliminate the PersonalityPrefix/Suffix & NeedsIndirectEncoding
fields from MAI: they aren't part of the asm syntax, they are
related to the structure of the object file.
To replace their functionality, add a new
TLOF::getSymbolForDwarfGlobalReference method which asks targets
to decide how to reference a global from EH in a pc-relative way.
The default implementation just returns the symbol. The default
darwin implementation references the symbol through an indirect
$non_lazy_ptr stub. The bizarro x86-64 darwin specialization
handles the weird "foo@GOTPCREL+4" hack.
DwarfException.cpp now uses this to emit the reference to the
symbol in the right way, and this also eliminates another
horrible hack from DwarfException.cpp:
- if (strcmp(MAI->getPersonalitySuffix(), "+4@GOTPCREL"))
- O << "-" << MAI->getPCSymbol();
llvm-svn: 81991
instead of syntactically as a string. This means that it keeps track of the
segment, section, flags, etc directly and asmprints them in the right format.
This also includes parsing and validation support for llvm-mc and
"attribute(section)", so we should now start getting errors about invalid
section attributes from the compiler instead of the assembler on darwin.
Still todo:
1) Uniquing of darwin mcsections
2) Move all the Darwin stuff out to MCSectionMachO.[cpp|h]
3) there are a few FIXMEs, for example what is the syntax to get the
S_GB_ZEROFILL segment type?
llvm-svn: 78547
2. Move section switch printing to MCSection virtual method which takes a
TAI. This eliminates textual formatting stuff from TLOF.
3. Eliminate SwitchToSectionDirective, getSectionFlagsAsString, and
TLOFELF::AtIsCommentChar.
llvm-svn: 78510
A TAI hook is appropriate in this case because this is just an
asm syntax issue, not a semantic difference. TLOF should model
the semantics of the section.
llvm-svn: 78498
creation activity into the target-specific subclasses of TLOF.
Before this, globals with explicit sections could be created by
the base class.
1. make getOrCreateSection protected, add a new getExplicitSectionGlobal
pure virtual method to assign sections to globals with a specified
section.
2. eliminate getSpecialCasedSectionGlobals, which is now PIC specific.
3. eliminate the getKindForNamedSection virtual method, which is
now just a static method for ELF.
4. Add implementions of getExplicitSectionGlobal for ELF/PECOFF/Darwin/PIC16.
They are now all detangled and understandable, woo! :)
llvm-svn: 78319
getLSDASection() to be more specific. This makes it pretty obvious
that the ELF LSDA section is being specified wrong in PIC mode. We're
probably getting a lot of startup-time relocations to a readonly page,
which is expensive and bad.
Someone who cares about ELF C++ should investigate this.
llvm-svn: 77847
compute it based on what it knows. As part of this, rename getSectionForMergeableConstant
to getSectionForConstant because it works for non-mergable constants also.
The only functionality change from this is that Xcore will start dropping
its jump tables into readonly section instead of data section in -static mode.
This should be fine as the linker resolves the relocations. If this is a
problem, let me know and we'll come up with another solution.
llvm-svn: 77833
should have no state that is specific to particular globals in the
section. In this case, it means the removal of the "isWeak" and
"ExplicitSection" bits. MCSection uses the new form of SectionKind.
To handle isWeak, I introduced a new SectionInfo class, which is
SectionKind + isWeak, and it is used by the part of the code generator
that does classification of a specific global.
The ExplicitSection disappears. It is moved onto MCSection as a new
"IsDirective" bit. Since the Name of a section is either a section
or directive, it makes sense to keep this bit in MCSection. Ultimately
the creator of MCSection should canonicalize (e.g.) .text to whatever
the actual section is.
llvm-svn: 77803
into the mergable section if it is one of our special cases. This could
obviously be improved, but this is the minimal fix and restores us to the
previous behavior.
llvm-svn: 77679
it is highly specific to the object file that will be generated in the end,
this introduces a new TargetLoweringObjectFile interface that is implemented
for each of ELF/MachO/COFF/Alpha/PIC16 and XCore.
Though still is still a brutal and ugly refactoring, this is a major step
towards goodness.
This patch also:
1. fixes a bunch of dangling pointer problems in the PIC16 backend.
2. disables the TargetLowering copy ctor which PIC16 was accidentally using.
3. gets us closer to xcore having its own crazy target section flags and
pic16 not having to shadow sections with its own objects.
4. fixes wierdness where ELF targets would set CStringSection but not
CStringSection_. Factor the code better.
5. fixes some bugs in string lowering on ELF targets.
llvm-svn: 77294