This makes us no longer relying on move-construction elision by the compiler.
Suggested by D. Blaikie.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264475
This is a recommit of r264414 after fixing the buildbot failure caused by
incompatible use of std::vector.erase().
The original message:
Add erase() which returns an iterator pointing to the next element after the
erased one. This makes it possible to erase selected elements while iterating
over the SetVector :
while (I != E)
if (test(*I))
I = SetVector.erase(I);
else
++I;
Reviewers: qcolombet, mcrosier, MatzeB, dblaikie
Subscribers: dberlin, dblaikie, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18281
llvm-svn: 264450
Summary:
Add erase() which returns an iterator pointing to the next element after the
erased one. This makes it possible to erase selected elements while iterating
over the SetVector :
while (I != E)
if (test(*I))
I = SetVector.erase(I);
else
++I;
Reviewers: qcolombet, mcrosier, MatzeB, dblaikie
Subscribers: dberlin, dblaikie, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18281
llvm-svn: 264414
Summary:
Loading IR with debug info improves MDString::get() from 19ms to 10ms.
This is a rework of D16597 with adding an "emplace" method on the StringMap
to avoid requiring the MDString move ctor to be public.
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17920
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264386
Summary:
StringMap ctor accepts an initialize size, but expect it to be
rounded to the next power of 2. The ctor can handle that directly
instead of expecting clients to round it. Also, since the map will
resize itself when 75% full, take this into account an initialize
a larger initial size to avoid any growth.
Reviewers: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18344
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264385
Summary:
Just running the loop in the unittests for a few more iterations
(till 48) exhibit that the condition on the limit was not handled
properly in r263522.
Rewrite the test to use a class to count move/copies that happens
when inserting into the map.
Also take the opportunity to refactor the logic to compute the
number of buckets required for a given number of entries in the map.
Use this when constructing a DenseMap with a desired size given to
the constructor (and add a tests for this).
Reviewers: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18345
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264384
The BumpPtrAllocator currently doesn't handle zero length allocations well.
The discussion for how to fix that is ongoing. However, there's no need
for StringRef::copy to actually allocate anything here anyway, so just
return StringRef() when we get a zero length copy.
Reviewed by David Blaikie
llvm-svn: 264201
MSVC as usual:
C:\Buildbot\Slave\llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast\llvm.src\include\llvm/ADT/STLExtras.h(120):
error C2100: illegal indirection
C:\Buildbot\Slave\llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast\llvm.src\include\llvm/IR/Instructions.h(3966):
note: see reference to class template instantiation
'llvm::mapped_iterator<llvm::User::op_iterator,llvm::CatchSwitchInst::DerefFnTy>'
being compiled
This reverts commit e091dd63f1f34e043748e28ad160d3bc17731168.
llvm-svn: 263760
In some places, like InstCombine, we resize a DenseMap to fit the elements
we intend to put in it, then insert those elements (to avoid continual
reallocations as it grows). But .resize(foo) doesn't actually do what
people think; it resizes to foo buckets (which is really an
implementation detail the user of DenseMap probably shouldn't care about),
not the space required to fit foo elements. DenseMap grows if 3/4 of its
buckets are full, so this actually causes one forced reallocation every
time instead of avoiding a reallocation.
This patch makes .resize(foo) do the intuitive thing: it grows to the size
necessary to fit foo elements without new allocations.
Also include a test to verify that .resize() actually does what we think it
does.
llvm-svn: 263522
Add support for trimming a single kind of character from a StringRef.
This makes the common case of trimming null bytes much neater. It's also
probably a bit speedier too, since it avoids creating a std::bitset in
find_{first,last}_not_of.
llvm-svn: 260925
As support expands to more runtimes, we'll need to
distinguish between more than just HSA and unknown.
This also lets us stop using unknown everywhere.
llvm-svn: 260790
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Summary:
The problem here is that an enum class can not be implicitly converted to an
integer. That assumption snuck back into PointerIntPair. This commit fixes the
issue and more importantly adds some unittests to make sure that we do not break
this again.
rdar://23594806
Reviewers: gribozavr
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16131
llvm-svn: 257574
type.
This makes it easy and safe to use a set of flags as one elmenet of
a tagged union with pointers. There is quite a bit of code that has
historically done this by casting arbitrary integers to "pointers" and
assuming that this was safe and reliable. It is neither, and has started
to rear its head by triggering safety asserts in various abstractions
like PointerLikeTypeTraits when the integers chosen are invariably poor
choices for *some* platform and *some* situation. Not to mention the
(hopefully unlikely) prospect of one of these integers actually getting
allocated!
With this, it will be straightforward to build type safe abstractions
like this without being error prone. The abstraction itself is also
remarkably simple thanks to the implicit conversion.
This use case and pattern was also independently created by the folks
working on Swift, and they're going to incrementally add any missing
functionality they find.
Differential Revision: http://reviews.llvm.org/D15844
llvm-svn: 257284
This is a much more general and powerful form of PointerUnion. It
provides a reasonably complete sum type (from type theory) for
pointer-like types. It has several significant advantages over the
existing PointerUnion infrastructure:
1) It allows more than two pointer types to participate without awkward
nesting structures.
2) It directly exposes the tag so that it is convenient to write
switches over the possible members.
3) It can re-use the same type for multiple tag values, something that
has been worked around by either abusing PointerIntPair or defining
nonce types and doing unsafe pointer casting.
4) It supports customization of the PointerLikeTypeTraits used for
specific member types. This means it could (in theory) be used even
with types that are over-aligned on allocation to expose larger
numbers of bits to the tag.
All in all, I think it is at least complimentary to the existing
infrastructure, and a strict improvement for some use cases.
Differential Revision: http://reviews.llvm.org/D15843
llvm-svn: 257282
We didn't actually statically check this, and so it worked 25% of the
time for me. =/ Really sorry it took so long to fix, I shouldn't leave
the commit log editor window open without saving and landing the commit.
=[
llvm-svn: 256528
Summary:
This follows D14577 to treat ARMv6-J as an alias for ARMv6,
instead of an architecture in its own right.
The functional change is that the default CPU when targeting ARMv6-J
changes from arm1136j-s to arm1136jf-s, which is currently used as
the default CPU for ARMv6; both are, in fact, ARMv6-J CPUs.
The J-bit (Jazelle support) is irrelevant to LLVM, and it doesn't
affect code generation, attributes, optimizations, or anything else,
apart from selecting the default CPU.
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14755
llvm-svn: 253675
Useful utility function; this wasn't too hard to do before, but also wasn't
obviously discoverable. Make it explicit. Reviewed offline by Michael
Gottesman.
llvm-svn: 253254
Summary:
* ARMv6KZ is the "canonical" name, given in the ARMARM
* ARMv6Z is an "official abbreviation" for it, mentioned in the ARMARM
* ARMv6ZK is a popular misspelling, which we should support as an alias.
The patch corrects the handling of the names.
Functional changes:
* ARMv6Z no longer treated as an architecture in its own right
* ARMv6ZK renamed to ARMv6KZ, accepting ARMv6ZK as an alias
* arm1176jz-s and arm1176jzf-s recognized as ARMv6ZK, instead of ARMv6K
* default ARMv6K CPU changed to arm1176j-s
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14568
llvm-svn: 253206
Re-implement `ilist_node::getNextNode()` and `getPrevNode()` without
relying on the sentinel having a "next" pointer. Instead, get access to
the owning list and compare against the `begin()` and `end()` iterators.
This only works when the node *can* get access to the owning list. The
new support is in `ilist_node_with_parent<>`, and any class `Ty`
inheriting from `ilist_node<NodeTy>` that wants `getNextNode()` and/or
`getPrevNode()` should inherit from
`ilist_node_with_parent<NodeTy, ParentTy>` instead. The requirements:
- `NodeTy` must have a `getParent()` function that returns the parent.
- `ParentTy` must have a `getSublistAccess()` static that, given a(n
ignored) `NodeTy*` (to determine which list), returns a member field
pointer to the appropriate `ilist<>`.
This isn't the cleanest way to get access to the owning list, but it
leverages the API already used in the IR hierarchy (see, e.g.,
`Instruction::getSublistAccess()`).
If anyone feels like ripping out the calls to `getNextNode()` and
`getPrevNode()` and replacing with direct iterator logic, they can also
remove the access function, etc., but as an incremental step, I'm
maintaining the API where it's currently used in tree.
If these requirements are *not* met, call sites with access to the ilist
can call `iplist<NodeTy>::getNextNode(NodeTy*)` directly, as in
ilistTest.cpp.
Why rewrite this?
The old code was broken, calling `getNext()` on a sentinel that possibly
didn't have a "next" pointer at all! The new code avoids that
particular flavour of UB (see the commit message for r252538 for more
details about the "lucky" memory layout that made this function so
interesting).
There's still some UB here: the end iterator gets downcast to `NodeTy*`,
even when it's a sentinel (which is typically
`ilist_half_node<NodeTy*>`). I'll tackle that in follow-up commits.
See this llvm-dev thread for more details:
http://lists.llvm.org/pipermail/llvm-dev/2015-October/091115.html
What's the danger?
There might be some code that relies on `getNextNode()` or
`getPrevNode()` *never* returning `nullptr` -- i.e., that relies on them
being broken when the sentinel is an `ilist_half_node<NodeTy>`. I tried
to root out those cases with the audits I did leading up to r252380, but
it's possible I missed one or two. I hope not.
(If (1) you have out-of-tree code, (2) you've reverted r252380
temporarily, and (3) you get some weird crashes with this commit, then I
recommend un-reverting r252380 and auditing the compile errors looking
for "strange" implicit conversions.)
llvm-svn: 252694
This complements CopyConstructorNotSmallTest. If we are testing the copy
constructor in such a way, we should also probably test assignment in the same
way.
llvm-svn: 251736
GNU tools require elfiamcu to take up the entire OS field, so, e.g.
i?86-*-linux-elfiamcu is not considered a legal triple.
Make us compatible.
Differential Revision: http://reviews.llvm.org/D14081
llvm-svn: 251390
This adds support for the i?86-*-elfiamcu triple, which indicates the IAMCU psABI is used.
Differential Revision: http://reviews.llvm.org/D13977
llvm-svn: 251222
This patch adds the underlying infrastructure for an AVR backend to be included into LLVM. It is the first of a series of patches aimed at moving the out-of-tree AVR backend into the tree.
It consists of adding a new`Triple` target 'avr'.
llvm-svn: 250492
and assert when mask is too large to apply in the small case,
previously the extra words were silently ignored.
clang-format the entire function to match current code standards.
This is a rewrite of r247972 which was reverted in r247983 due to
warning and possible UB on 32-bits hosts.
llvm-svn: 247993