This CL extends declarative rewrite rules to support matching and
generating ops with variadic operands/results. For this, the
generated `matchAndRewrite()` method for each pattern now are
changed to
* Use "range" types for the local variables used to store captured
values (`operand_range` for operands, `ArrayRef<Value *>` for
values, *Op for results). This allows us to have a unified way
of handling both single values and value ranges.
* Create local variables for each operand for op creation. If the
operand is variadic, then a `SmallVector<Value*>` will be created
to collect all values for that operand; otherwise a `Value*` will
be created.
* Use a collective result type builder. All result types are
specified via a single parameter to the builder.
We can use one result pattern to replace multiple results of the
matched root op. When that happens, it will require specifying
types for multiple results. Add a new collective-type builder.
PiperOrigin-RevId: 264588559
This will allow for naming values the same as existing SSA values for regions attached to operations that are isolated from above. This fits in with how the system already allows separate name scopes for sibling regions. This name shadowing can be enabled in the custom parser of operations by setting the 'enableNameShadowing' flag to true when calling 'parseRegion'.
%arg = constant 10 : i32
foo.op {
%arg = constant 10 : i32
}
PiperOrigin-RevId: 264255999
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:
Pass *pass = ....
pm.addPass(pass);
pm.addPass(pass);
pm.run(module);
PiperOrigin-RevId: 263053082
There are currently several different terms used to refer to a parent IR unit in 'get' methods: getParent/getEnclosing/getContaining. This cl standardizes all of these methods to use 'getParent*'.
PiperOrigin-RevId: 262680287
This will allow for reusing the same pattern list, which may be costly to continually reconstruct, on multiple invocations.
PiperOrigin-RevId: 262664599
This allows for proper forward declaration, as opposed to leaking the internal implementation via a using directive. This also allows for all pattern building to go through 'insert' methods on the OwningRewritePatternList, replacing uses of 'push_back' and 'RewriteListBuilder'.
PiperOrigin-RevId: 261816316
verifyUnusedValue is a bit strange given that it is specified in a
result pattern but used to generate match statements. Now we are
able to support multi-result ops better, we can retire it and replace
it with a HasNoUseOf constraint. This reduces the number of mechanisms.
PiperOrigin-RevId: 261166863
We allow to generate more ops than what are needed for replacing
the matched root op. Only the last N static values generated are
used as replacement; the others serve as auxiliary ops/values for
building the replacement.
With the introduction of multi-result op support, an op, if used
as a whole, may be used to replace multiple static values of
the matched root op. We need to consider this when calculating
the result range an generated op is to replace.
For example, we can have the following pattern:
```tblgen
def : Pattern<(ThreeResultOp ...),
[(OneResultOp ...), (OneResultOp ...), (OneResultOp ...)]>;
// Two op to replace all three results
def : Pattern<(ThreeResultOp ...),
[(TwoResultOp ...), (OneResultOp ...)]>;
// One op to replace all three results
def : Pat<(ThreeResultOp ...), (ThreeResultOp ...)>;
def : Pattern<(ThreeResultOp ...),
[(AuxiliaryOp ...), (ThreeResultOp ...)]>;
```
PiperOrigin-RevId: 261017235
RewriterGen was emitting invalid C++ code if the pattern required to create a
zero-result operation due to the absence of a special case that would avoid
generating a spurious comma. Handle this case. Also add rewriter tests for
zero-argument operations.
PiperOrigin-RevId: 260576998
The code was written with the assumption that on failure an error would be
issued by another verifier. However verification is stopping on the first
failure which lead to an empty output. Instead we make sure an error is
displayed.
Also add tests in the test dialect for this trait.
PiperOrigin-RevId: 260541290
It's quite common that we want to put further constraints on the matched
multi-result op's specific results. This CL enables referencing symbols
bound to source op with the `__N` syntax.
PiperOrigin-RevId: 260122401
This mode analyzes which operations are legalizable to the given target if a conversion were to be applied, i.e. no rewrites are ever performed even on success. This mode is useful for device partitioning or other utilities that may want to analyze the effect of conversion to different targets before performing it.
The analysis method currently just fills a provided set with the operations that were found to be legalizable. This can be extended in the future to capture more information as necessary.
PiperOrigin-RevId: 259987105
A recent commit introduced UnitAttr into the ODS but did not include the
support for using UnitAttrs in operation definitions (only patterns were
supported). Extend the ODS definition of UnitAttr to be usable in operation
definition by providing a trivial builder and an accessor that returns "true"
if the unit attribute is present since the attribute presence itself has
meaning.
Additionally, test that unit attributes are effectively rewritten in patterns
in addition to the already available FileCheck tests of the generated rewriter
code.
PiperOrigin-RevId: 259560653
- introduce parseRegionArgumentList (similar to parseOperandList) to parse a
list of region arguments with a delimiter
- allows defining custom parse for op's with multiple/variadic number of
region arguments
- use this on the gpu.launch op (although the latter has a fixed number
of region arguments)
- add a test dialect op to test region argument list parsing (with the
no delimiter case)
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#40
PiperOrigin-RevId: 259442536
This cl enforces that the conversion of the type signatures for regions, and thus their entry blocks, is handled via ConversionPatterns. A new hook 'applySignatureConversion' is added to the ConversionPatternRewriter to perform the desired conversion on a region. This also means that the handling of rewriting the signature of a FuncOp is moved to a pattern. A default implementation is provided via 'mlir::populateFuncOpTypeConversionPattern'. This removes the hacky implicit 'dynamically legal' status of FuncOp that was present previously, and leaves it up to the user to decide when/how to convert the signature of a function.
PiperOrigin-RevId: 259161999
The TypeUtilities.{cpp,h}, currently living in {lib,include/mlir}/Support, do
not belong to the Support library. Instead, they form a separate utility
library that depends on the IR library. The operations it provides relate to
standard types (tensors, memrefs) as well as to operation manipulation, making
them a better fit for the main IR library.
PiperOrigin-RevId: 259108314
This allows for providing specific handling for dynamically legal operations/dialects without overriding the general 'isDynamicallyLegal' hook. This also means that a derived ConversionTarget class need not always be defined when some operations are dynamically legal.
Example usage:
ConversionTarget target(...);
target.addDynamicallyLegalOp<ReturnOp>([](ReturnOp op) {
return ...
};
target.addDynamicallyLegalDialect<StandardOpsDialect>([](Operation *op) {
return ...
};
PiperOrigin-RevId: 258884753
This specific PatternRewriter will allow for exposing hooks in the future that are only useful for the conversion framework, e.g. type conversions.
PiperOrigin-RevId: 258818122
This cl begins a large refactoring over how signature types are converted in the DialectConversion infrastructure. The signatures of blocks are now converted on-demand when an operation held by that block is being converted. This allows for handling the case where a region is created as part of a pattern, something that wasn't possible previously.
This cl also generalizes the region signature conversion used by FuncOp to work on any region of any operation. This generalization allows for removing the 'apply*Conversion' functions that were specific to FuncOp/ModuleOp. The implementation currently uses a new hook on TypeConverter, 'convertRegionSignature', but this should ideally be removed in favor of using Patterns. That depends on adding support to the PatternRewriter used by ConversionPattern to allow applying signature conversions to regions, which should be coming in a followup.
PiperOrigin-RevId: 258645733
This explicit tag is useful is several ways:
*) This simplifies how to mark sub sections of a dialect as explicitly unsupported, e.g. my target supports all operations in the foo dialect except for these select few. This is useful for partial lowerings between dialects.
*) Partial conversions will now verify that operations that were explicitly marked as illegal must be converted. This provides some guarantee that the operations that need to be lowered by a specific pass will be.
PiperOrigin-RevId: 258582879
Users generally want several different modes of conversion. This cl refactors DialectConversion to provide two:
* Partial (applyPartialConversion)
- This mode allows for illegal operations to exist in the IR, and does not fail if an operation fails to be legalized.
* Full (applyFullConversion)
- This mode fails if any operation is not properly legalized to the conversion target. This allows for ensuring that the IR after a conversion only contains operations legal for the target.
PiperOrigin-RevId: 258412243
Mostly one would use the type specification directly on the operand, but for
cases where the type of the operand depends on other operand types, `TypeIs`
attribute can be used to construct verification methods.
PiperOrigin-RevId: 258411758
When using a RewritePattern and replacing an operation with an existing value, that value may have already been replaced by something else. This cl ensures that only the final value is used when applying rewrites.
PiperOrigin-RevId: 258058488
This CL introduces a new syntax for creating multi-result ops and access their
results in result patterns. Specifically, if a multi-result op is unbound or
bound to a name without a trailing `__N` suffix, it will act as a value pack
and expand to all its values. If a multi-result op is bound to a symbol with
`__N` suffix, only the N-th result will be extracted and used.
PiperOrigin-RevId: 256465208
In ODS, right now we use StringAttrs to emulate enum attributes. It is
suboptimal if the op actually can and wants to store the enum as a
single integer value; we are paying extra cost on storing and comparing
the attribute value.
This CL introduces a new enum attribute subclass that are backed by
IntegerAttr. The downside with IntegerAttr-backed enum attributes is
that the assembly form now uses integer values, which is less obvious
than the StringAttr-backed ones. However, that can be remedied by
defining custom assembly form with the help of the conversion utility
functions generated via EnumsGen.
Choices are given to the dialect writers to decide which one to use for
their enum attributes.
PiperOrigin-RevId: 255935542
During conversion, if a type conversion has dangling uses a type conversion must persist after conversion has finished to maintain valid IR. In these cases, we now query the TypeConverter to materialize a conversion for us. This allows for the default case of a full conversion to continue working as expected, but also handle the degenerate cases more robustly.
PiperOrigin-RevId: 255637171