the appropriate registers for arm and x86_64. The register names for the
arguments that are the size of a pointer or less are all named "arg1", "arg2",
etc. This allows you to read these registers by name:
(lldb) register read arg1 arg2 arg3
...
You can also now specify you want to see alternate register names when executing
the read register command:
(lldb) register read --alternate
(lldb) register read -A
llvm-svn: 131376
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:
virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);
virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);
There is now a new class specifically designed to hold register values:
lldb_private::RegisterValue
The new register context calls that subclasses must implement are:
virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) = 0;
virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) = 0;
The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..).
All RegiterContext and other sources have been switched over to using the new
regiter value class.
llvm-svn: 131096
Switch the EmulateInstruction to use the standard RegisterInfo structure
that is defined in the lldb private types intead of passing the reg kind and
reg num everywhere. EmulateInstruction subclasses also need to provide
RegisterInfo structs given a reg kind and reg num. This eliminates the need
for the GetRegisterName() virtual function and allows more complete information
to be passed around in the read/write register callbacks. Subclasses should
always provide RegiterInfo structs with the generic register info filled in as
well as at least one kind of register number in the RegisterInfo.kinds[] array.
llvm-svn: 130256
are defined as enumerations. Current bits include:
eEmulateInstructionOptionAutoAdvancePC
eEmulateInstructionOptionIgnoreConditions
Modified the EmulateInstruction class to have a few more pure virtuals that
can help clients understand how many instructions the emulator can handle:
virtual bool
SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0;
Where instruction types are defined as:
//------------------------------------------------------------------
/// Instruction types
//------------------------------------------------------------------
typedef enum InstructionType
{
eInstructionTypeAny, // Support for any instructions at all (at least one)
eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp
eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer
eInstructionTypeAll // All instructions of any kind
} InstructionType;
This allows use to tell what an emulator can do and also allows us to request
these abilities when we are finding the plug-in interface.
Added the ability for an EmulateInstruction class to get the register names
for any registers that are part of the emulation. This helps with being able
to dump and log effectively.
The UnwindAssembly class now stores the architecture it was created with in
case it is needed later in the unwinding process.
Added a function that can tell us DWARF register names for ARM that goes
along with the source/Utility/ARM_DWARF_Registers.h file:
source/Utility/ARM_DWARF_Registers.c
Took some of plug-ins out of the lldb_private namespace.
llvm-svn: 130189
- Add ability to control whether or not the emulator advances the
PC register (in the emulation state), if the instruction itself
does not change the pc value..
- Fix a few typos in asm description strings.
- Fix bug in the carry flag calculation.
llvm-svn: 129168
This allows you to have a platform selected, then specify a triple using
"i386" and have the remaining triple items (vendor, os, and environment) set
automatically.
Many interpreter commands take the "--arch" option to specify an architecture
triple, so now the command options needed to be able to get to the current
platform, so the Options class now take a reference to the interpreter on
construction.
Modified the build LLVM building in the Xcode project to use the new
Xcode project level user definitions:
LLVM_BUILD_DIR - a path to the llvm build directory
LLVM_SOURCE_DIR - a path to the llvm sources for the llvm that will be used to build lldb
LLVM_CONFIGURATION - the configuration that lldb is built for (Release,
Release+Asserts, Debug, Debug+Asserts).
I also changed the LLVM build to not check if "lldb/llvm" is a symlink and
then assume it is a real llvm build directory versus the unzipped llvm.zip
package, so now you can actually have a "lldb/llvm" directory in your lldb
sources.
llvm-svn: 129112
Modified the Disassembler::Instruction base class to contain an Opcode
instance so that we can know the bytes for an instruction without needing
to keep the data around.
Modified the DisassemblerLLVM's instruction class to correctly extract the
opcode bytes if all goes well.
llvm-svn: 128248
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602
LLDB plugin directory and a user LLDB plugin directory. We currently still
need to work out at what layer the plug-ins will be, but at least we are
prepared for plug-ins. Plug-ins will attempt to be loaded from the
"/Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Plugins"
folder, and from the "~/Library/Application Support/LLDB/Plugins" folder on
MacOSX. Each plugin will be scanned for:
extern "C" bool LLDBPluginInitialize(void);
extern "C" void LLDBPluginTerminate(void);
If at least LLDBPluginInitialize is found, the plug-in will be loaded. The
LLDBPluginInitialize function returns a bool that indicates if the plug-in
should stay loaded or not (plug-ins might check the current OS, current
hardware, or anything else and determine they don't want to run on the current
host). The plug-in is uniqued by path and added to a static loaded plug-in
map. The plug-in scanning happens during "lldb_private::Initialize()" which
calls to the PluginManager::Initialize() function. Likewise with termination
lldb_private::Terminate() calls PluginManager::Terminate(). The paths for the
plug-in directories is fetched through new Host calls:
bool Host::GetLLDBPath (ePathTypeLLDBSystemPlugins, dir_spec);
bool Host::GetLLDBPath (ePathTypeLLDBUserPlugins, dir_spec);
This way linux and other systems can define their own appropriate locations
for plug-ins to be loaded.
To allow dynamic shared library loading, the Host layer has also been modified
to include shared library open, close and get symbol:
static void *
Host::DynamicLibraryOpen (const FileSpec &file_spec,
Error &error);
static Error
Host::DynamicLibraryClose (void *dynamic_library_handle);
static void *
Host::DynamicLibraryGetSymbol (void *dynamic_library_handle,
const char *symbol_name,
Error &error);
lldb_private::FileSpec also has been modified to support directory enumeration
in an attempt to abstract the directory enumeration into one spot in the code.
The directory enumertion function is static and takes a callback:
typedef enum EnumerateDirectoryResult
{
eEnumerateDirectoryResultNext, // Enumerate next entry in the current directory
eEnumerateDirectoryResultEnter, // Recurse into the current entry if it is a directory or symlink, or next if not
eEnumerateDirectoryResultExit, // Exit from the current directory at the current level.
eEnumerateDirectoryResultQuit // Stop directory enumerations at any level
};
typedef FileSpec::EnumerateDirectoryResult (*EnumerateDirectoryCallbackType) (void *baton,
FileSpec::FileType file_type,
const FileSpec &spec);
static FileSpec::EnumerateDirectoryResult
FileSpec::EnumerateDirectory (const char *dir_path,
bool find_directories,
bool find_files,
bool find_other,
EnumerateDirectoryCallbackType callback,
void *callback_baton);
This allow clients to specify the directory to search, and specifies if only
files, directories or other (pipe, symlink, fifo, etc) files will cause the
callback to be called. The callback also gets to return with the action that
should be performed after this directory entry. eEnumerateDirectoryResultNext
specifies to continue enumerating through a directory with the next entry.
eEnumerateDirectoryResultEnter specifies to recurse down into a directory
entry, or if the file is not a directory or symlink/alias to a directory, then
just iterate to the next entry. eEnumerateDirectoryResultExit specifies to
exit the current directory and skip any entries that might be remaining, yet
continue enumerating to the next entry in the parent directory. And finally
eEnumerateDirectoryResultQuit means to abort all directory enumerations at
all levels.
Modified the Declaration class to not include column information currently
since we don't have any compilers that currently support column based
declaration information. Columns support can be re-enabled with the
additions of a #define.
Added the ability to find an EmulateInstruction plug-in given a target triple
and optional plug-in name in the plug-in manager.
Fixed a few cases where opendir/readdir was being used, but yet not closedir
was being used. Soon these will be deprecated in favor of the new directory
enumeration call that was added to the FileSpec class.
llvm-svn: 124716