Summary:
When we decide that the result of the invoke instruction need to be spilled, we need to insert the spill into a block that is on the normal edge coming out of the invoke instruction. (Prior to this change the code would insert the spill immediately after the invoke instruction, which breaks the IR, since invoke is a terminator instruction).
In the following example, we will split the edge going into %cont and insert the spill there.
```
%r = invoke double @print(double 0.0) to label %cont unwind label %pad
cont:
%0 = call i8 @llvm.coro.suspend(token none, i1 false)
switch i8 %0, label %suspend [i8 0, label %resume
i8 1, label %cleanup]
resume:
call double @print(double %r)
```
Reviewers: majnemer
Reviewed By: majnemer
Subscribers: mehdi_amini, llvm-commits, EricWF
Differential Revision: https://reviews.llvm.org/D29102
llvm-svn: 293006
Summary: In iterative sample pgo where profile is collected from PGOed binary, we may see indirect call targets promoted and inlined in the profile. Before profile annotation, we need to make this happen in order to annotate correctly on IR. This patch explicitly promotes these indirect calls and inlines them before profile annotation.
Reviewers: xur, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29040
llvm-svn: 292979
Summary:
GVNHoist performs all the optimizations that MLSM does to loads, in a
more general way, and in a faster time bound (MLSM is N^3 in most
cases, N^4 in a few edge cases).
This disables the load portion.
Note that the way ld_hoist_st_sink.ll is written makes one think that
the loads should be moved to the while.preheader block, but
1. Neither MLSM nor GVNHoist do it (they both move them to identical places).
2. MLSM couldn't possibly do it anyway, as the while.preheader block
is not the head of the diamond, while.body is. (GVNHoist could do it
if it was legal).
3. At a glance, it's not legal anyway because the in-loop load
conflict with the in-loop store, so the loads must stay in-loop.
I am happy to update the test to use update_test_checks so that
checking is tighter, just was going to do it as a followup.
Note that i can find no particular benefit to the store portion on any
real testcase/benchmark i have (even size-wise). If we really still
want it, i am happy to commit to writing a targeted store sinker, just
taking the code from the MemorySSA port of MergedLoadStoreMotion
(which is N^2 worst case, and N most of the time).
We can do what it does in a much better time bound.
We also should be both hoisting and sinking stores, not just sinking
them, anyway, since whether we should hoist or sink to merge depends
basically on luck of the draw of where the blockers are placed.
Nonetheless, i have left it alone for now.
Reviewers: chandlerc, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29079
llvm-svn: 292971
a lazy-asserting PoisoningVH.
AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.
This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.
The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.
The rest is straight cleanup.
I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.
Differential Revision: https://reviews.llvm.org/D29006
llvm-svn: 292928
With this change dominator tree remains in sync after each step of loop
peeling.
Differential Revision: https://reviews.llvm.org/D29029
llvm-svn: 292895
Running non-LCSSA-preserving LoopSimplify followed by LCSSA on (roughly) the
same loop is incorrect, since LoopSimplify may break LCSSA arbitrarily higher
in the loop nest. Instead, run LCSSA first, and then run LCSSA-preserving
LoopSimplify on the result.
This fixes PR31718.
Differential Revision: https://reviews.llvm.org/D29055
llvm-svn: 292854
Summary:
Next round of extra tests for MSSA.
I have a prototype invariant.group handling implementation
that fixes all the FIXMEs, and I think it will be
easier to see what is the difference if I firstly
post this, and then only fix fixits.
Reviewers: george.burgess.iv, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29022
llvm-svn: 292797
bots ever since d0k fixed the CHECK lines so that it did something at
all.
It isn't actually testing SCEV directly but LSR, so move it into LSR and
the x86-specific tree of tests that already exists there. Target
dependence is common and unavoidable with the current design of LSR.
llvm-svn: 292774
invalidation of deleted functions in GlobalDCE.
This was always testing a bug really triggered in GlobalDCE. Right now
we have analyses with asserting value handles into IR. As long as those
remain, when *deleting* an IR unit, we cannot wait for the normal
invalidation scheme to kick in even though it was designed to work
correctly in the face of these kinds of deletions. Instead, the pass
needs to directly handle invalidating the analysis results pointing at
that IR unit.
I've tought the Inliner about this and this patch teaches GlobalDCE.
This will handle the asserting VH case in the existing test as well as
other issues of the same fundamental variety. I've moved the test into
the GlobalDCE directory and added a comment explaining what is going on.
Note that we cannot simply require LVI here because LVI is too lazy.
llvm-svn: 292773
While this is covered by a clang test case, we should have something
locally to LLVM that immediately checks the inliner doesn't leave
analyses to dangling IR bodies.
llvm-svn: 292772
new PM's inliner.
The bug happens when we refine an SCC after having computed a proxy for
the FunctionAnalysisManager, and then proceed to compute fresh analyses
for functions in the *new* SCC using the manager provided by the old
SCC's proxy. *And* when we manage to mutate a function in this new SCC
in a way that invalidates those analyses. This can be... challenging to
reproduce.
I've managed to contrive a set of functions that trigger this and added
a test case, but it is a bit brittle. I've directly checked that the
passes run in the expected ways to help avoid the test just becoming
silently irrelevant.
This gets the new PM back to passing the LLVM test suite after the PGO
improvements landed.
llvm-svn: 292757
Summary:
This test had a bug: !llvm.invariant.group instead
of !invariant.group.
Also add some new test for future development.
All tests passes, when MSSA will support invariant.group
only the lines with FIXIT should be changed.
Reviewers: dberlin, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28969
llvm-svn: 292730
We may be able to assert that no shl-shl or lshr-lshr pairs ever get here
because we should have already handled those in foldShiftedShift().
llvm-svn: 292726
This adds the last remaining core feature of the loop pass pipeline in
the new PM and removes the last of the really egregious hacks in the
LICM tests.
Sadly, this requires really substantial changes in the unittests in
order to provide and maintain simplified loops. This is particularly
hard because for example LoopSimplify will try to fold undef branches to
an ideal direction and simplify the loop accordingly.
Differential Revision: https://reviews.llvm.org/D28766
llvm-svn: 292709
Summary:
Under option -mergefunc-preserve-debug-info we:
- Do not create a new function for a thunk.
- Retain the debug info for a thunk's parameters (and associated
instructions for the debug info) from the entry block.
Note: -debug will display the algorithm at work.
- Create debug-info for the call (to the shared implementation) made by
a thunk and its return value.
- Erase the rest of the function, retaining the (minimally sized) entry
block to create a thunk.
- Preserve a thunk's call site to point to the thunk even when both occur
within the same translation unit, to aid debugability. Note that this
behaviour differs from the underlying -mergefunc implementation which
modifies the thunk's call site to point to the shared implementation
when both occur within the same translation unit.
Reviewers: echristo, eeckstein, dblaikie, aprantl, friss
Reviewed By: aprantl
Subscribers: davide, fhahn, jfb, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D28075
llvm-svn: 292702
Summary:
Currently we return undef, but we're in the process of changing the
LangRef so that llvm.sqrt behaves like the other math intrinsics,
matching the return value of the standard libcall but not setting errno.
This change is legal even without the LangRef change because currently
calling llvm.sqrt(x) where x is negative is spec'ed to be UB. But in
practice it's also safe because we're simply constant-folding fewer
inputs: Inputs >= -0 get constant-folded as before, but inputs < -0 now
aren't constant-folded, because ConstantFoldFP aborts if the host math
function raises an fp exception.
Reviewers: hfinkel, efriedma, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28929
llvm-svn: 292692
This adds the following to the new PM based inliner in PGO mode:
* Use block frequency analysis to derive callsite's profile count and use
that to adjust thresholds of hot and cold callsites.
* Incrementally update the BFI of the caller after a callee gets inlined
into it. This incremental update is only within an invocation of the run
method - BFI is not preserved across calls to run.
Update the function entry count of the callee after inlining it into a
caller.
* I've tuned the thresholds for the hot and cold callsites using a hacked
up version of the old inliner that explicitly computes BFI on a set of
internal benchmarks and spec. Once the new PM based pipeline stabilizes
(IIRC Chandler mentioned there are known issues) I'll benchmark this
again and adjust the thresholds if required.
Inliner PGO support.
Differential revision: https://reviews.llvm.org/D28331
llvm-svn: 292666
Unfortunately, recognizing these in value tracking may cause us to hit
a hack in InstCombiner::visitICmpInst() more often:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/109340.html
...but besides being the obviously Right Thing To Do, there's a clear
codegen win from identifying these patterns for several targets.
llvm-svn: 292655
To import a type identifier we read the summary and create external
references to the symbols defined when exporting.
Differential Revision: https://reviews.llvm.org/D28546
llvm-svn: 292654
Summary:
This rewrites store expression/leader handling. We no longer use the
value operand as the leader, instead, we store it separately. We also
now store the stored value as part of the expression, and compare it
when comparing stores for equality. This enables us to get rid of a
bunch of our previous hacks and machinations, as the existing
machinery takes care of everything *except* updating the stored value
on classes. The only time we have to update it is if the storecount
goes to 0, and when we do, we destroy it.
Since we no longer use the value operand as the leader, during elimination, we have to use the value operand. Doing this also fixes a bunch of store forwarding cases we were missing.
Any value operand we use is guaranteed to either be updated by previous eliminations, or minimized by future ones.
(IE the fact that we don't use the most dominating value operand when it's not a constant does not affect anything).
Sadly, this change also exposes that we didn't pay attention to the
output of the pr31594.ll test, as it also very clearly exposes the
same store leader bug we are fixing here.
(I added pr31682.ll anyway, but maybe we think that's too large to be useful)
On the plus side, propagate-ir-flags.ll now passes due to the
corrected store forwarding.
This change was 3 stage'd on darwin and linux, with the full test-suite.
Reviewers:
davide
Subscribers:
llvm-commits
llvm-svn: 292648
This is the third attemp to recommit r292526.
The original summary:
Currently, a GEP is considered free only if its indices are all constant.
TTI::getGEPCost() can give target-specific more accurate analysis. TTI is
already used for the cost of many other instructions.
llvm-svn: 292633
This is the second attemp to recommit r292526.
The original summary:
Currently, a GEP is considered free only if its indices are all constant.
TTI::getGEPCost() can give target-specific more accurate analysis. TTI is
already used for the cost of many other instructions.
llvm-svn: 292616
Simplify a packss/packus truncation based on the elements of the mask that are actually demanded.
Differential Revision: https://reviews.llvm.org/D28777
llvm-svn: 292591
Like several other loop passes (the vectorizer, etc) this pass doesn't
really fit the model of a loop pass. The critical distinction is that it
isn't intended to be pipelined together with other loop passes. I plan
to add some documentation to the loop pass manager to make this more
clear on that side.
LoopSink is also different because it doesn't really need a lot of the
infrastructure of our loop passes. For example, if there aren't loop
invariant instructions causing a preheader to exist, there is no need to
form a preheader. It also doesn't need LCSSA because this pass is
only involved in sinking invariant instructions from a preheader into
the loop, not reasoning about live-outs.
This allows some nice simplifications to the pass in the new PM where we
can directly walk the loops once without restructuring them.
Differential Revision: https://reviews.llvm.org/D28921
llvm-svn: 292589
Part of the assert has been left active for further debugging.
The other part has been turned into a stat for tracking for the
moment.
llvm-svn: 292583