"optimizeCompareInstr" converts compares (cmp/cmn) into plain sub/add
instructions when the flags are not used anymore. This conversion is valid for
most instructions, but not all. Some instructions that don't set the flags
(e.g. sub with immediate) can set the SP, whereas the flag setting version uses
the same encoding for the "zero" register.
Update the code to also check for the return register before performing the
optimization to make sure that a cmp doesn't suddenly turn into a sub that sets
the stack pointer.
I don't have a test case for this, because it isn't easy to trigger.
llvm-svn: 222255
Reversing a CB* instruction used to drop the flags on the condition. On the
included testcase, this lead to a read from an undefined vreg.
Using addOperand keeps the flags, here <undef>.
Differential Revision: http://reviews.llvm.org/D6159
llvm-svn: 221507
While fixing up the register classes in the machine combiner in a previous
commit I missed one.
This fixes the last one and adds a test case.
llvm-svn: 221308
This is a follow up to commit r219742. It removes the CCInMI variable
and accesses the CC in CSCINC directly. In the case of a conditional
branch accessing the CC with CCInMI was wrong.
llvm-svn: 219748
Peephole optimization that generates a single conditional branch
for csinc-branch sequences like in the examples below. This is
possible when the csinc sets or clears a register based on a condition
code and the branch checks that register. Also the condition
code may not be modified between the csinc and the original branch.
Examples:
1. Convert csinc w9, wzr, wzr, <CC>;tbnz w9, #0, 0x44
to b.<invCC>
2. Convert csinc w9, wzr, wzr, <CC>; tbz w9, #0, 0x44
to b.<CC>
rdar://problem/18506500
llvm-svn: 219742
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
This reapplies r216805 with a fix to a copy-past error, which resulted in an
incorrect register class.
Original commit message:
Select the correct register class for the various instructions that are
generated when combining instructions and constrain the registers to the
appropriate register class.
This fixes rdar://problem/18183707.
llvm-svn: 217019
Select the correct register class for the various instructions that are
generated when combining instructions and constrain the registers to the
appropriate register class.
This fixes rdar://problem/18183707.
llvm-svn: 216805
This is a cleaner solution to the problem described in r215431.
When instructions are combined a dangling DBG_VALUE is removed.
This resolves bug 20598.
llvm-svn: 215587
The combiner ignored DBG nodes when checking
the uses of a virtual register.
It combined a sequence like
%vreg1 = madd %vreg2, %vreg3,...
DBG_VALUE (%vreg1 ...)
%vreg4 = add %vreg1,...
to
%vreg4 = madd %vreg2, %vreg3
leaving behind a dangling DBG_VALUE with
a definition. This triggered an assertion
in the MachineTraceMetrics.cpp module.
llvm-svn: 215431
Re-commit of r214832,r21469 with a work-around that
avoids the previous problem with gcc build compilers
The work-around is to use SmallVector instead of ArrayRef
of basic blocks in preservesResourceLen()/MachineCombiner.cpp
llvm-svn: 215151
sequence on AArch64
Re-commit of r214669 without changes to test cases
LLVM::CodeGen/AArch64/arm64-neon-mul-div.ll and
LLVM:: CodeGen/AArch64/dp-3source.ll
This resolves the reported compfails of the original commit.
llvm-svn: 214832
sequence - AArch64 target support
This patch turns off madd/msub generation in the DAGCombiner and generates
them in the MachineCombiner instead. It replaces the original code sequence
with the combined sequence when it is beneficial to do so.
When there is no machine model support it always generates the madd/msub
instruction. This is true also when the objective is to optimize for code
size: when the combined sequence is shorter is always chosen and does not
get evaluated.
When there is a machine model the combined instruction sequence
is evaluated for critical path and resource length using machine
trace metrics and the original code sequence is replaced when it is
determined to be faster.
rdar://16319955
llvm-svn: 214669
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
To make sure branches are in range, we need to do a better job of estimating
the length of an inline assembly block than "it's probably 1 instruction, who'd
write asm with more than that?".
Fortunately there's already a (highly suspect, see how many ways you can think
of to break it!) callback for this purpose, which is used by the other targets.
rdar://problem/17277590
llvm-svn: 211095
A test in test/Generic creates a DAG where the NZCV output of an ADCS is used
by multiple nodes. This makes LLVM want to save a copy of NZCV for later, which
it couldn't do before.
This should be the last fix required for the aarch64 buildbot.
llvm-svn: 209651
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576
system headers above the includes of generated '.inc' files that
actually contain code. In a few targets this was already done pretty
consistently, but it wasn't done *really* consistently anywhere. It is
strictly cleaner IMO and necessary in a bunch of places where the
DEBUG_TYPE is referenced from the generated code. Consistency with the
necessary places trumps. Hopefully the build bots are OK with the
movement of intrin.h...
llvm-svn: 206838
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
Frame index handling is now target-agnostic, so delete the target hooks
for creation & asm printing of target-specific addressing in DBG_VALUEs
and any related functions.
llvm-svn: 184067
This is essentially a stripped-down version of the ConstandIslands pass (which
always had these two functions), providing just the features necessary for
correctness.
In particular there needs to be a way to resolve the situation where a
conditional branch's destination block ends up out of range.
This issue crops up when self-hosting for AArch64.
llvm-svn: 175269
This implements the review suggestion to simplify the AArch64 backend. If we
later discover that we *really* need the extra complexity of the
ConstantIslands pass for performance reasons it can be resurrected.
llvm-svn: 175258
In the near future litpools will be in a different section, which means that
any access to them is at least two instructions. This makes the case for a
movz/movk pair (if total offset <= 32-bits) even more compelling.
llvm-svn: 175257
This moves the bit twiddling and string fiddling functions required by other
parts of the backend into a separate library. Previously they resided in
AArch64Desc, which created a circular dependency between various components.
llvm-svn: 174369
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
llvm-svn: 174054