The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
About pristine regsiters:
Pristine registers "hold a value that is useless to the current
function, but that must be preserved - they are callee saved registers
that have not been saved." This concept saves compile time as it frees
the prologue/epilogue inserter from adding every such register to every
basic blocks live-in list.
However the current code in getPristineRegs is formulated in a
complicated way: Inside the function prologue and epilogue all callee
saves are considered pristine, while in the rest of the code only the
non-saved ones are considered pristine. This requires logic to
differentiate between prologue/epilogue and the rest and in the presence
of shrink-wrapping this even becomes complicated/expensive. It's also
unnecessary because the prologue epilogue inserters already mark
callee-save registers that are saved/restores properly in the respective
blocks in the prologue/epilogue (see updateLiveness() in
PrologueEpilogueInserter.cpp). So only declaring non-saved/restored
callee saved registers as pristine just works.
Differential Revision: http://reviews.llvm.org/D10101
llvm-svn: 238524
This was previously returning int. However there are no negative opcode
numbers and more importantly this was needlessly different from
MCInstrDesc::getOpcode() (which even is the value returned here) and
SDValue::getOpcode()/SDNode::getOpcode().
llvm-svn: 237611
If you somehow added a MachineOperand to an instruction
that did not have the parent set, the verifier would
crash since it attempts to use the operand's parent.
llvm-svn: 236249
Some subregisters are only to indicate different access sizes, while not
providing any way to actually divide the register up into multiple
disjunct parts. Avoid tracking subregister liveness in these cases as it
is not beneficial.
Differential Revision: http://reviews.llvm.org/D8429
llvm-svn: 232695
uses of TM->getSubtargetImpl and propagate to all calls.
This could be a debugging regression in places where we had a
TargetMachine and/or MachineFunction but don't have it as part
of the MachineInstr. Fixing this would require passing a
MachineFunction/Function down through the print operator, but
none of the existing uses in tree seem to do this.
llvm-svn: 230710
This preserves the handy functionality of force-enabling the MachineVerifier, without the need to embed usage of environment variables in LLVM client applications.
llvm-svn: 228079
Summary:
Some pseudo instruction expansions break down a wide register use into
multiple uses of smaller sub registers. If the super register was
partially undefined the broken down sub registers may be completely
undefined now leading to MachineVerifier complaints. Unfortunately
liveness information to add the required dead flags is not easily
(cheaply) available when expanding pseudo instructions.
This commit changes the verifier to be quiet if there is an additional
implicit use of a super register. Pseudo instruction expanders can use
this to mark cases where partially defined values get potentially broken
into completely undefined ones.
Differential Revision: http://reviews.llvm.org/D6973
llvm-svn: 226047
We can't mark partially undefined registers, so we have to allow reading
a register in the machine verifier if just parts of a register are
defined.
llvm-svn: 223896
In the subregister liveness tracking case we do not create implicit
reads on partial register writes anymore, still we need to produce a new
SSA value for partial writes so the live segment has to end.
llvm-svn: 223895
The MachineVerifier used to check that there was always exactly one
unconditional branch to a non-landingpad (normal) successor.
If that normal successor to an invoke BB is unreachable, it seems
reasonable to only have one successor, the landing pad.
On targets other than AArch64 (and on AArch64 with a different testcase),
the branch folder turns the branch to the landing pad into a fallthrough.
The MachineVerifier, which relies on AnalyzeBranch, is unable to check
the condition, and doesn't complain. However, it does in this specific
testcase, where the branch to the landing pad remained.
Make the MachineVerifier accept it.
llvm-svn: 223059
Indices into the table are stored in each MCRegisterClass instead of a pointer. A new method, getRegClassName, is added to MCRegisterInfo and TargetRegisterInfo to lookup the string in the table.
llvm-svn: 222118
Take a StringRef instead of a "const char *".
Take a "std::error_code &" instead of a "std::string &" for error.
A create static method would be even better, but this patch is already a bit too
big.
llvm-svn: 216393
This makes front/back symmetric with begin/end, avoiding some confusion.
Added instr_front/instr_back for the old behavior, corresponding to
instr_begin/instr_end. Audited all three in-tree users of back(), all
of them look like they don't want to look inside bundles.
Fixes an assertion (PR19815) when generating debug info on mips, where a
delay slot was bundled at the end of a branch.
llvm-svn: 209580
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)
llvm-svn: 202052
The error reported the number of explicit operands,
but that isn't what is checked. In my case, this
resulted in the confusing errors
"Too few operands." followed shortly by
"8 operands expected, but 8 given."
llvm-svn: 194862
The Segment struct contains a single interval; multiple instances of this struct
are used to construct a live range, but the struct is not a live range by
itself.
llvm-svn: 192392
1> on every path through the CFG, a FrameSetup <n> is always followed by a
FrameDestroy <n> and a FrameDestroy is always followed by a FrameSetup.
2> stack adjustments are identical on all CFG edges to a merge point.
3> frame is destroyed at end of a return block.
PR16393
llvm-svn: 186350
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
the MachineInstr MayLoad/MayLoad flags are based on the tablegen implementation.
For inline assembly, however, we need to compute these based on the constraints.
Revert r166929 as this is no longer needed, but leave the test case in place.
rdar://12033048 and PR13504
llvm-svn: 167040
The operands on an INLINEASM machine instruction are divided into groups
headed by immediate flag operands. Verify this structure.
Extract verifyTiedOperands(), and only call it for non-inlineasm
instructions.
llvm-svn: 162849
WHen running with -verify-machineinstrs, check that tied operands come
in matching use/def pairs, and that they are consistent with MCInstrDesc
when it applies.
llvm-svn: 162816
IR that hasn't been through SimplifyCFG can look like this:
br i1 %b, label %r, label %r
Make sure we don't create duplicate Machine CFG edges in this case.
Fix the machine code verifier to accept conditional branches with a
single CFG edge.
llvm-svn: 162230
Verify that all paths from the entry block to a virtual register read
pass through a def. Enable this check even when MRI->isSSA() is false.
Verify that the live range of a virtual register is live out of all
predecessor blocks, even for PHI-values.
This requires that PHIElimination sometimes inserts IMPLICIT_DEF
instruction in predecessor blocks.
llvm-svn: 159150
Bundles should be treated as one atomic transaction when checking
liveness. That is how the register allocator (and VLIW targets) treats
bundles.
llvm-svn: 158116
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
llvm-svn: 157854
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
llvm-svn: 156328
The late scheduler depends on accurate liveness information if it is
breaking anti-dependencies, so we should be able to verify it.
Relax the terminator checking in the machine code verifier so it can
handle the basic blocks created by if conversion.
llvm-svn: 153614
Extract the liveness verification into its own method.
This makes it possible to run the machine code verifier after liveness
information is no longer required to be valid.
llvm-svn: 153596
Extract a base class and provide four specific sub-classes for iterating
over const/non-const bundles/instructions.
This eliminates the mystery bool constructor argument.
llvm-svn: 151684
After the SlotIndex slot names were updated, it is possible to apply
stricter checks to live intervals.
Also treat bundles as bags of operands when checking live intervals.
llvm-svn: 151531
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def
and use lists of the BUNDLE instruction) and a pass to unpack bundles.
- Teach more of MachineBasic and MachineInstr methods to be bundle aware.
- Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to
prevent IT blocks from being broken apart.
llvm-svn: 146542
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
The old naming scheme (load/use/def/store) can be traced back to an old
linear scan article, but the names don't match how slots are actually
used.
The load and store slots are not needed after the deferred spill code
insertion framework was deleted.
The use and def slots don't make any sense because we are using
half-open intervals as is customary in C code, but the names suggest
closed intervals. In reality, these slots were used to distinguish
early-clobber defs from normal defs.
The new naming scheme also has 4 slots, but the names match how the
slots are really used. This is a purely mechanical renaming, but some
of the code makes a lot more sense now.
llvm-svn: 144503
PhysReg operands are not allowed to have sub-register indices at all.
For virtual registers with sub-reg indices, check that all registers in
the register class support the sub-reg index.
llvm-svn: 141220
This is still a hack until we can teach tblgen to generate the
optional CPSR operand rather than an implicit CPSR def. But the
strangeness is now limited to the selection DAG. ADD/SUB MI's no
longer have implicit CPSR defs, nor do we allow flag setting variants
of these opcodes in machine code. There are several corner cases to
consider, and getting one wrong would previously lead to nasty
miscompilation. It's not the first time I've debugged one, so this
time I added enough verification to ensure it won't happen again.
llvm-svn: 140228
There is only one legitimate use remaining, in addIntervalsForSpills().
All other calls to hasPHIKill() are only used to update PHIKill flags.
The addIntervalsForSpills() function is part of the old spilling
framework, only used by linearscan.
llvm-svn: 139783
This includes registers like EFLAGS and ST0-ST7. We don't check for
liveness issues in the verifier and scavenger because registers will
never be allocated from these classes.
While in SSA form, we do care about the liveness of unallocatable
unreserved registers. Liveness of EFLAGS and ST0 neds to be correct for
MachineDCE and MachineSinking.
llvm-svn: 136541