and visibility of declarations, because it was extremely messy and it
increased the size of NamedDecl.
An improved implementation is forthcoming.
llvm-svn: 121012
struct X {
X() : au_i1(123) {}
union {
int au_i1;
float au_f1;
};
};
clang will now deal with au_i1 explicitly as an IndirectFieldDecl.
llvm-svn: 120900
declarations.
The motivation for this patch is that linkage/visibility computations
are linear in the number of redeclarations of an entity, and we've run
into a case where a single translation unit has > 6500 redeclarations
of the same (unused!) external variable. Since each redeclaration
involves a linkage check, the resulting quadratic behavior makes Clang
slow to a crawl. With this change, a simple test with 512
redeclarations of a variable syntax-checks ~20x faster than
before.
That said, I hate this change, and will probably end up reverting it
in a few hours. Reasons to hate it:
- It makes NamedDecl larger, since we don't have enough free bits in
Decl to squeeze in the extra information about caching.
- There are way too many places where we need to invalidate this
cache, because the visibility of a declaration can change due to
redeclarations (!). Despite self-hosting and passing the testsuite,
I have no confidence that I've found all of places where this cache
needs to be invalidated.
llvm-svn: 120808
constructor template will not be used to copy a class object to a
value of its own type. We were eliminating all constructor templates
whose specializations look like a copy constructor, which eliminated
important candidates. Fixes PR8182.
llvm-svn: 118418
its initial creation/deserialization and store the changes in a chained PCH.
The idea is that the AST entities call methods on the ASTMutationListener to give notifications
of changes; the PCHWriter implements the ASTMutationListener interface and stores the incremental changes
of the updated entity. WIP
llvm-svn: 117235
into CXXRecordDecl. The only part that we do not handle this way are
using declarations, since that would require extra name lookup that we
don't currently want to pay for. This fixes <rdar://problem/8459981>,
so that LLDB can build a CXXRecordDecl and magically get all of the
right bits set.
llvm-svn: 115026
completely into CXXRecordDecl, by adding a new completeDefinition()
function. This required a little reshuffling of the final-overrider
checking code, since the "abstract" calculation in the presence of
abstract base classes needs to occur in
CXXRecordDecl::completeDefinition() but we don't want to compute final
overriders more than one in the common case.
llvm-svn: 115007
in CXXRecordDecl itself. Yes, this is also part of <rdar://problem/8459981>.
This reinstates r114924, with one crucial bug fix: we were ignoring
the implicit fields created by anonymous structs/unions when updating
the bits in CXXRecordDecl, which means that a class/struct containing
only an anonymous class/struct would be considered "empty". Hilarity
follows.
llvm-svn: 114980
Centralize the management of CXXRecordDecl::DefinitionData's Aggregate
and PlainOldData bits in CXXRecordDecl itself. Another milepost on the
road toward <rdar://problem/8459981>.
llvm-svn: 114977
one of them) was causing a series of failures:
http://google1.osuosl.org:8011/builders/clang-x86_64-darwin10-selfhost/builds/4518
svn merge -c -114929 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114929 into '.':
U include/clang/Sema/Sema.h
U include/clang/AST/DeclCXX.h
U lib/Sema/SemaDeclCXX.cpp
U lib/Sema/SemaTemplateInstantiateDecl.cpp
U lib/Sema/SemaDecl.cpp
U lib/Sema/SemaTemplateInstantiate.cpp
U lib/AST/DeclCXX.cpp
svn merge -c -114925 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114925 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/AST/DeclCXX.cpp
svn merge -c -114924 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114924 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/Sema/SemaDecl.cpp
G lib/AST/DeclCXX.cpp
U lib/AST/ASTContext.cpp
svn merge -c -114921 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114921 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/Sema/SemaDecl.cpp
G lib/AST/DeclCXX.cpp
llvm-svn: 114933
HasTrivialConstructor, HasTrivialCopyConstructor,
HasTrivialCopyAssignment, and HasTrivialDestructor bits in
CXXRecordDecl's methods. This completes all but the Abstract bit and
the set of conversion functions, both of which will require a bit of
extra work. The majority of <rdar://problem/8459981> is now
implemented (but not all of it).
llvm-svn: 114929
already be determined by isCopyAssignmentOperator(), and was set too
late in the process for all clients to see the appropriate
value. Cleanup only; no functionality change.
llvm-svn: 114916
DeclaredCopyConstructor bits in CXXRecordDecl's DefinitionData
structure. Rather than having Sema call addedConstructor or set the
bits directly at semi-random places, move all of the logic for
managing these bits into CXXRecordDecl itself and tie the
addedConstructor call into DeclContext::addDecl().
This makes it easier for AST-building clients to get the right bits
set in DefinitionData, and is one small part of <rdar://problem/8459981>.
llvm-svn: 114889
suppressing USRs). Also, fix up the source location information for
using directives so that the declaration location refers to the
namespace name.
llvm-svn: 112693
declarations for implicit default constructors, copy constructors,
copy assignment operators, and destructors. On a "simple" translation
unit that includes a bunch of C++ standard library headers, we
generate relatively few of these implicit declarations now:
4/159 implicit default constructors created
18/236 implicit copy constructors created
70/241 implicit copy assignment operators created
0/173 implicit destructors created
And, on this translation unit, this optimization doesn't really
provide any benefit. I'll do some more performance measurements soon,
but this completes the implementation work for <rdar://problem/8151045>.
llvm-svn: 107551
implicitly-generated copy constructor. Previously, Sema would perform
some checking and instantiation to determine which copy constructors,
etc., would be called, then CodeGen would attempt to figure out which
copy constructor to call... but would get it wrong, or poke at an
uninstantiated default argument, or fail in other ways.
The new scheme is similar to what we now do for the implicit
copy-assignment operator, where Sema performs all of the semantic
analysis and builds specific ASTs that look similar to the ASTs we'd
get from explicitly writing the copy constructor, so that CodeGen need
only do a direct translation.
However, it's not quite that simple because one cannot explicit write
elementwise copy-construction of an array. So, I've extended
CXXBaseOrMemberInitializer to contain a list of indexing variables
used to copy-construct the elements. For example, if we have:
struct A { A(const A&); };
struct B {
A array[2][3];
};
then we generate an implicit copy assignment operator for B that looks
something like this:
B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { }
CodeGen will loop over the invented variables i0 and i1 to visit all
elements in the array, so that each element in the destination array
will be copy-constructed from the corresponding element in the source
array. Of course, if we're dealing with arrays of scalars or class
types with trivial copy-assignment operators, we just generate a
memcpy rather than a loop.
Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes
all of its regression tests.
Conspicuously missing from this patch is handling for the exceptional
case, where we need to destruct those objects that we have
constructed. I'll address that case separately.
llvm-svn: 103079
assignment operators.
Previously, Sema provided type-checking and template instantiation for
copy assignment operators, then CodeGen would synthesize the actual
body of the copy constructor. Unfortunately, the two were not in sync,
and CodeGen might pick a copy-assignment operator that is different
from what Sema chose, leading to strange failures, e.g., link-time
failures when CodeGen called a copy-assignment operator that was not
instantiation, run-time failures when copy-assignment operators were
overloaded for const/non-const references and the wrong one was
picked, and run-time failures when by-value copy-assignment operators
did not have their arguments properly copy-initialized.
This implementation synthesizes the implicitly-defined copy assignment
operator bodies in Sema, so that the resulting ASTs encode exactly
what CodeGen needs to do; there is no longer any special code in
CodeGen to synthesize copy-assignment operators. The synthesis of the
body is relatively simple, and we generate one of three different
kinds of copy statements for each base or member:
- For a class subobject, call the appropriate copy-assignment
operator, after overload resolution has determined what that is.
- For an array of scalar types or an array of class types that have
trivial copy assignment operators, construct a call to
__builtin_memcpy.
- For an array of class types with non-trivial copy assignment
operators, synthesize a (possibly nested!) for loop whose inner
statement calls the copy constructor.
- For a scalar type, use built-in assignment.
This patch fixes at least a few tests cases in Boost.Spirit that were
failing because CodeGen picked the wrong copy-assignment operator
(leading to link-time failures), and I suspect a number of undiagnosed
problems will also go away with this change.
Some of the diagnostics we had previously have gotten worse with this
change, since we're going through generic code for our
type-checking. I will improve this in a subsequent patch.
llvm-svn: 102853
of a class template or class template partial specialization. That is to
say, in
template <class T> class A { ... };
or
template <class T> class B<const T*> { ... };
make 'A<T>' and 'B<const T*>' sugar for the corresponding InjectedClassNameType
when written inside the appropriate context. This allows us to track the
current instantiation appropriately even inside AST routines. It also allows
us to compute a DeclContext for a type much more efficiently, at some extra
cost every time we write a template specialization (which can be optimized,
but I've left it simple in this patch).
llvm-svn: 102407
function declaration, since it may end up being changed (e.g.,
"extern" can become "static" if a prior declaration was static). Patch
by Enea Zaffanella and Paolo Bolzoni.
llvm-svn: 101826
on unqualified declarations.
Patch by Enea Zaffanella! Minimal adjustments: allocate the ExtInfo nodes
with the ASTContext and delete them during Destroy(). I audited a bunch of
Destroy methods at the same time, to ensure that the correct teardown was
being done.
llvm-svn: 98540
I'm expecting this portion of the AST to grow and change, and I'd like to
be able to do that with minimal recompilation. If this proves unnecessary
when access control is fully-implemented, I'll fold the classes back into
DeclCXX.h.
llvm-svn: 98249
injected class name of a class template or class template partial specialization.
This is a non-canonical type; the canonical type is still a template
specialization type. This becomes the TypeForDecl of the pattern declaration,
which cleans up some amount of code (and complicates some other parts, but
whatever).
Fixes PR6326 and probably a few others, primarily by re-establishing a few
invariants about TypeLoc sizes.
llvm-svn: 98134
how we find the operator delete that matches withe operator new we
found in a C++ new-expression.
This will also need CodeGen support. On a happy note, we're now a
"nans" away from building tramp3d-v4.
llvm-svn: 97209
1) emit base destructors as aliases to their unique base class destructors
under some careful conditions. This is enabled for the same targets that can
support complete-to-base aliases, i.e. not darwin.
2) Emit non-variadic complete constructors for classes with no virtual bases
as calls to the base constructor. This is enabled on all targets and in
theory can trigger in situations that the alias optimization can't (mostly
involving virtual bases, mostly not yet supported).
These are bundled together because I didn't think it worthwhile to split them,
not because they really need to be.
llvm-svn: 96842
of a C++ record. Exposed a lot of problems where various routines were
silently doing The Wrong Thing (or The Acceptable Thing in The Wrong Order)
when presented with a non-definition. Also cuts down on memory usage.
llvm-svn: 95330
(necessarily simultaneous) changes:
- CXXBaseOrMemberInitializer now contains only a single initializer
rather than a set of initialiation arguments + a constructor. The
single initializer covers all aspects of initialization, including
constructor calls as necessary but also cleanup of temporaries
created by the initializer (which we never handled
before!).
- Rework + simplify code generation for CXXBaseOrMemberInitializers,
since we can now just emit the initializer as an initializer.
- Switched base and member initialization over to the new
initialization code (InitializationSequence), so that it
- Improved diagnostics for the new initialization code when
initializing bases and members, to match the diagnostics produced
by the previous (special-purpose) code.
- Simplify the representation of type-checked constructor initializers in
templates; instead of keeping the fully-type-checked AST, which is
rather hard to undo at template instantiation time, throw away the
type-checked AST and store the raw expressions in the AST. This
simplifies instantiation, but loses a little but of information in
the AST.
- When type-checking implicit base or member initializers within a
dependent context, don't add the generated initializers into the
AST, because they'll look like they were explicit.
- Record in CXXConstructExpr when the constructor call is to
initialize a base class, so that CodeGen does not have to infer it
from context. This ensures that we call the right kind of
constructor.
There are also a few "opportunity" fixes here that were needed to not
regress, for example:
- Diagnose default-initialization of a const-qualified class that
does not have a user-declared default constructor. We had this
diagnostic specifically for bases and members, but missed it for
variables. That's fixed now.
- When defining the implicit constructors, destructor, and
copy-assignment operator, set the CurContext to that constructor
when we're defining the body.
llvm-svn: 94952
Change LookupResult to use UnresolvedSet. Also extract UnresolvedSet into its
own header and make it templated over an inline capacity.
llvm-svn: 93959
finds nothing), and the current instantiation has dependent base
classes, treat the qualified lookup as if it referred to an unknown
specialization. Fixes PR6031.
llvm-svn: 93433
- All classes can have a key function; templates don't change that.
non-template classes when computing the key function.
- We always mark all of the virtual member functions of class
template instantiations.
- The vtable for an instantiation of a class template has weak
linkage.
We could probably use available_externally linkage for vtables of
classes instantiated by explicit instantiation declarations (extern
templates), but GCC doesn't do this and I'm not 100% that the ABI
permits it.
llvm-svn: 92753
into pretty much everything about overload resolution in order to wean
BuildDeclarationNameExpr off LookupResult::getAsSingleDecl(). Replace
UnresolvedFunctionNameExpr with UnresolvedLookupExpr, which generalizes the
idea of a non-member lookup that we haven't totally resolved yet, whether by
overloading, argument-dependent lookup, or (eventually) the presence of
a function template in the lookup results.
Incidentally fixes a problem with argument-dependent lookup where we were
still performing ADL even when the lookup results contained something from
a block scope.
Incidentally improves a diagnostic when using an ObjC ivar from a class method.
This just fell out from rewriting BuildDeclarationNameExpr's interaction with
lookup, and I'm too apathetic to break it out.
The only remaining uses of OverloadedFunctionDecl that I know of are in
TemplateName and MemberExpr.
llvm-svn: 89544
two classes, one for typenames and one for values; this seems to have some
support from Doug if not necessarily from the extremely-vague-on-this-point
standard. Track the location of the 'typename' keyword in a using-typename
decl. Make a new lookup result for unresolved values and deal with it in
most places.
llvm-svn: 89184
sugared types. The basic problem is that our qualifier accessors
(getQualifiers, getCVRQualifiers, isConstQualified, etc.) only look at
the current QualType and not at any qualifiers that come from sugared
types, meaning that we won't see these qualifiers through, e.g.,
typedefs:
typedef const int CInt;
typedef CInt Self;
Self.isConstQualified() currently returns false!
Various bugs (e.g., PR5383) have cropped up all over the front end due
to such problems. I'm addressing this problem by splitting each
qualifier accessor into two versions:
- the "local" version only returns qualifiers on this particular
QualType instance
- the "normal" version that will eventually combine qualifiers from this
QualType instance with the qualifiers on the canonical type to
produce the full set of qualifiers.
This commit adds the local versions and switches a few callers from
the "normal" version (e.g., isConstQualified) over to the "local"
version (e.g., isLocalConstQualified) when that is the right thing to
do, e.g., because we're printing or serializing the qualifiers. Also,
switch a bunch of
Context.getCanonicalType(T1).getUnqualifiedType() == Context.getCanonicalType(T2).getQualifiedType()
expressions over to
Context.hasSameUnqualifiedType(T1, T2)
llvm-svn: 88969
like a copy constructor to the overload set, just ignore it. This
ensures that we don't try to use such a constructor as a copy
constructor *without* triggering diagnostics at the point of
declaration.
Note that we *do* diagnose such copy constructors when explicitly
written by the user (e.g., as an explicit specialization).
llvm-svn: 88733
instead of all assignment operators. The mistake messes up IRGen because
it ends up assuming that the assignment operator is actually the implicit
copy assignment operator, and therefore tries to emit the RHS as an lvalue.
llvm-svn: 86307
templates, and keep track of how those member classes were
instantiated or specialized.
Make sure that we don't try to instantiate an explicitly-specialized
member class of a class template, when that explicit specialization
was a declaration rather than a definition.
llvm-svn: 83547
"usual deallocation function" with two arguments. CodeGen will have to
handle this case specifically, since the value for the second argument
(the size of the allocated object) may have to be computed at run
time.
Fixes the Sema part of PR4782.
llvm-svn: 83080
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
llvm-svn: 82705
Several of the existing methods were identical to their respective
specializations, and so have been removed entirely. Several more 'leaf'
optimizations were introduced.
The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.
llvm-svn: 82501
to pointer function for delete expression. 2)
Treat type conversion function and its 'const' version
as identical in building the visible conversion list.
llvm-svn: 81930
instantiation of a member function template or member function of a
class template to be out-of-line if the definition of that function
template or member function was defined out-of-line. This ensures that
we get the correct linkage for explicit instantiations of out-of-line
definitions.
llvm-svn: 81562
declarations of same, introduce a single AST class and add appropriate bits
(encoded in the namespace) for whether a decl is "real" or not. Much hackery
about previously-declared / not-previously-declared, but it's essentially
mandated by the standard that friends alter lookup, and this is at least
fairly non-intrusive.
Refactor the Sema methods specific to friends for cleaner flow and less nesting.
Incidentally solve a few bugs, but I remain confident that we can put them back.
llvm-svn: 80353
and will participate in overload resolution. Unify the instantiation
of CXXMethodDecls and CXXConstructorDecls, which had already gotten
out-of-sync.
llvm-svn: 79658
DeclaratorDecl contains a DeclaratorInfo* to keep type source info.
Subclasses of DeclaratorDecl are FieldDecl, FunctionDecl, and VarDecl.
EnumConstantDecl still inherits from ValueDecl since it has no need for DeclaratorInfo.
Decl/Sema interfaces accept a DeclaratorInfo as parameter but no DeclaratorInfo is created yet.
llvm-svn: 79392
FriendFunctionDecl, and create instances as appropriate.
The design of FriendFunctionDecl is still somewhat up in the air; you can
befriend arbitrary types of functions --- methods, constructors, etc. ---
and it's not clear that this representation captures that very well.
We'll have a better picture when we start consuming this data in access
control.
llvm-svn: 78653
1) Allow the Index library (and any other interested client) to walk
the set of declarations for a given tag (enum, union, class,
whatever). At the moment, this information is not readily available.
2) Reduce our dependence on TagDecl::TypeForDecl being mapped down
to a TagType (for which getDecl() will return the tag definition, if
one exists). This property won't exist for class template partial
specializations.
3) Make the canonical declaration of a TagDecl actually canonical,
e.g., so that it does not change when the tag is defined.
llvm-svn: 77523
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsRecordType() -> Type::getAs<RecordType>()
Type::getAsPointerType() -> Type::getAs<PointerType>()
Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsTagType() -> Type::getAs<TagType>()
And remove Type::getAsReferenceType(), etc.
This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.
llvm-svn: 77510
and __has_trivial_constructor builtin pseudo-functions and
additionally implements __has_trivial_copy and __has_trivial_assign,
from John McCall!
llvm-svn: 76916
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.
llvm-svn: 76193
in their order of construction for each class and use it
to to check on propery order of base class construction
under -Wreorder option.
llvm-svn: 75270
Remove ASTContext parameter from DeclContext's methods. This change cascaded down to other Decl's methods and changes to call sites started "escalating".
Timings using pre-tokenized "cocoa.h" showed only a ~1% increase in time run between and after this commit.
llvm-svn: 74506
templates.
For example, this now type-checks (but does not instantiate the body
of deref<int>):
template<typename T> T& deref(T* t) { return *t; }
void test(int *ip) {
int &ir = deref(ip);
}
Specific changes/additions:
* Template argument deduction from a call to a function template.
* Instantiation of a function template specializations (just the
declarations) from the template arguments deduced from a call.
* FunctionTemplateDecls are stored directly in declaration contexts
and found via name lookup (all forms), rather than finding the
FunctionDecl and then realizing it is a template. This is
responsible for most of the churn, since some of the core
declaration matching and lookup code assumes that all functions are
FunctionDecls.
llvm-svn: 74213
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS);
so we can easily add access specifiers to diagnostics.
llvm-svn: 67795
the declarations of member classes are instantiated when the owning
class template is instantiated. The definitions of such member classes
are instantiated when a complete type is required.
This change also introduces the injected-class-name into a class
template specialization.
llvm-svn: 67707
response to attempts to diagnose an "incomplete" type. This will force
us to use DiagnoseIncompleteType more regularly (rather than looking at
isIncompleteType), but that's also a good thing.
Implicit instantiation is still very simplistic, and will create a new
definition for the class template specialization (as it should) but it
only actually instantiates the base classes and attaches
those. Actually instantiating class members will follow.
Also, instantiate the types of non-type template parameters before
checking them, allowing, e.g.,
template<typename T, T Value> struct Constant;
to work properly.
llvm-svn: 65924
giving them rough classifications (normal types, never-canonical
types, always-dependent types, abstract type representations) and
making it far easier to make sure that we've hit all of the cases when
decoding types.
Switched some switch() statements on the type class over to using this
mechanism, and filtering out those things we don't care about. For
example, CodeGen should never see always-dependent or non-canonical
types, while debug info generation should never see always-dependent
types. More switch() statements on the type class need to be moved
over to using this approach, so that we'll get warnings when we add a
new type then fail to account for it somewhere in the compiler.
As part of this, some types have been renamed:
TypeOfExpr -> TypeOfExprType
FunctionTypeProto -> FunctionProtoType
FunctionTypeNoProto -> FunctionNoProtoType
There shouldn't be any functionality change...
llvm-svn: 65591
CXXRecordDecl that is used to represent class template
specializations. These are canonical declarations that can refer to
either an actual class template specialization in the code, e.g.,
template<> class vector<bool> { };
or to a template instantiation. However, neither of these features is
actually implemented yet, so really we're just using (and uniqing) the
declarations to make sure that, e.g., A<int> is a different type from
A<float>. Note that we carefully distinguish between what the user
wrote in the source code (e.g., "A<FLOAT>") and the semantic entity it
represents (e.g., "A<float, int>"); the former is in the sugared Type,
the latter is an actual Decl.
llvm-svn: 64716
This will simplify runtime replacement of ASTContext's allocator. Keeping the allocator private (and removing getAllocator() entirely) is also goodness.
llvm-svn: 63135
that every declaration lives inside a DeclContext.
Moved several things that don't have names but were ScopedDecls (and,
therefore, NamedDecls) to inherit from Decl rather than NamedDecl,
including ObjCImplementationDecl and LinkageSpecDecl. Now, we don't
store empty DeclarationNames for these things, nor do we try to insert
them into DeclContext's lookup structure.
The serialization tests are temporarily disabled. We'll re-enable them
once we've sorted out the remaining ownership/serialiazation issues
between DeclContexts and TranslationUnion, DeclGroups, etc.
llvm-svn: 62562
- ObjCContainerDecl's (ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl), ObjCCategoryImpl, & ObjCImplementation are all DeclContexts.
- ObjCMethodDecl is now a ScopedDecl (so it can play nicely with DeclContext).
- ObjCContainerDecl now does iteration/lookup using DeclContext infrastructure (no more linear search:-)
- Removed ASTContext argument to DeclContext::lookup(). It wasn't being used and complicated it's use from an ObjC AST perspective.
- Added Sema::ProcessPropertyDecl() and removed Sema::diagnosePropertySetterGetterMismatch().
- Simplified Sema::ActOnAtEnd() considerably. Still more work to do.
- Fixed an incorrect casting assumption in Sema::getCurFunctionOrMethodDecl(), now that ObjCMethodDecl is a ScopedDecl.
- Removed addPropertyMethods from ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl.
This passes all the tests on my machine. Since many of the changes are central to the way ObjC finds it's methods, I expect some fallout (and there are still a handful of FIXME's). Nevertheless, this should be a step in the right direction.
llvm-svn: 61929
Duplicate-member checking within classes is still a little messy, and
anonymous unions are still completely broken in C. We'll need to unify
the handling of fields in C and C++ to make this code applicable in
both languages.
llvm-svn: 61878
Make C++ classes track the POD property (C++ [class]p4)
Track the existence of a copy assignment operator.
Implicitly declare the copy assignment operator if none is provided.
Implement most of the parsing job for the G++ type traits extension.
Fully implement the low-hanging fruit of the type traits:
__is_pod: Whether a type is a POD.
__is_class: Whether a type is a (non-union) class.
__is_union: Whether a type is a union.
__is_enum: Whether a type is an enum.
__is_polymorphic: Whether a type is polymorphic (C++ [class.virtual]p1).
llvm-svn: 61746
DeclContexts whose members are visible from enclosing DeclContexts up
to (and including) the innermost enclosing non-transparent
DeclContexts. Transparent DeclContexts unify the mechanism to be used
for various language features, including C enumerations, anonymous
unions, C++0x inline namespaces, and C++ linkage
specifications. Please refer to the documentation in the Clang
internals manual for more information.
Only enumerations and linkage specifications currently use transparent
DeclContexts.
Still to do: use transparent DeclContexts to implement anonymous
unions and GCC's anonymous structs extension, and, later, the C++0x
features. We also need to tighten up the DeclContext/ScopedDecl link
to ensure that every ScopedDecl is in a single DeclContext, which
will ensure that we can then enforce ownership and reduce the memory
footprint of DeclContext.
llvm-svn: 61735
just like all other members, and remove the special variables in
CXXRecordDecl to store them. This eliminates a lot of special-case
code for constructors and destructors, including
ActOnConstructor/ActOnDeclarator and special lookup rules in
LookupDecl. The result is far more uniform and manageable.
Diagnose the redeclaration of member functions.
llvm-svn: 61048
and separates lexical name lookup from qualified name lookup. In
particular:
* Make DeclContext the central data structure for storing and
looking up declarations within existing declarations, e.g., members
of structs/unions/classes, enumerators in C++0x enums, members of
C++ namespaces, and (later) members of Objective-C
interfaces/implementations. DeclContext uses a lazily-constructed
data structure optimized for fast lookup (array for small contexts,
hash table for larger contexts).
* Implement C++ qualified name lookup in terms of lookup into
DeclContext.
* Implement C++ unqualified name lookup in terms of
qualified+unqualified name lookup (since unqualified lookup is not
purely lexical in C++!)
* Limit the use of the chains of declarations stored in
IdentifierInfo to those names declared lexically.
* Eliminate CXXFieldDecl, collapsing its behavior into
FieldDecl. (FieldDecl is now a ScopedDecl).
* Make RecordDecl into a DeclContext and eliminates its
Members/NumMembers fields (since one can just iterate through the
DeclContext to get the fields).
llvm-svn: 60878
parameters, with some semantic analysis:
- Template parameters are introduced into template parameter scope
- Complain about template parameter shadowing (except in Microsoft mode)
Note that we leak template parameter declarations like crazy, a
problem we'll remedy once we actually create proper declarations for
templates.
Next up: dependent types and value-dependent/type-dependent
expressions.
llvm-svn: 60597
destructors, and conversion functions. The placeholders were used to
work around the fact that the parser and some of Sema really wanted
declarators to have simple identifiers; now, the code that deals with
declarators will use DeclarationNames.
llvm-svn: 59469
representing the names of declarations in the C family of
languages. DeclarationName is used in NamedDecl to store the name of
the declaration (naturally), and ObjCMethodDecl is now a NamedDecl.
llvm-svn: 59441
conversion functions. Instead, we just use a placeholder identifier
for these (e.g., "<constructor>") and override NamedDecl::getName() to
provide a human-readable name.
This is one potential solution to the problem; another solution would
be to replace the use of IdentifierInfo* in NamedDecl with a different
class that deals with identifiers better. I'm also prototyping that to
see how it compares, but this commit is better than what we had
previously.
llvm-svn: 59193
functions in C++, e.g.,
struct X {
operator bool() const;
};
Note that these conversions don't actually do anything, since we don't
yet have the ability to use them for implicit or explicit conversions.
llvm-svn: 58860
Implicit declaration of destructors (when necessary).
Extended Declarator to store information about parsed constructors
and destructors; this will be extended to deal with declarators that
name overloaded operators (e.g., "operator +") and user-defined
conversion operators (e.g., "operator int").
llvm-svn: 58767
duplication in the handling of copy-initialization by constructor,
which occurs both for initialization of a declaration and for
overloading. The initialization code is due for some refactoring.
llvm-svn: 58756
when appropriate.
Conversions for class types now make use of copy constructors. I've
replaced the egregious hack allowing class-to-class conversions with a
slightly less egregious hack calling these conversions standard
conversions (for overloading reasons).
llvm-svn: 58622
conversions.
Notes:
- Overload resolution for converting constructors need to prohibit
user-defined conversions (hence, the test isn't -verify safe yet).
- We still use hacks for conversions from a class type to itself.
This will be the case until we start implicitly declaring the appropriate
special member functions. (That's next on my list)
llvm-svn: 58513
Notes:
- Constructors are never found by name lookup, so they'll never get
pushed into any scope. Instead, they are stored as an
OverloadedFunctionDecl in CXXRecordDecl for easy overloading.
- There's a new action isCurrentClassName that determines whether an
identifier is the name of the innermost class currently being defined;
we use this to identify the declarator-id grammar rule that refers to
a type-name.
- MinimalAction does *not* support parsing constructors.
- We now handle virtual and explicit function specifiers.
llvm-svn: 58499
Instead of using two sets of Decl kinds (Struct/Union/Class and CXXStruct/CXXUnion/CXXClass), use one 'Record' and one 'CXXRecord' Decl kind and make tag kind a property of TagDecl.
Cleans up the code a bit and better reflects that Decl class structure.
llvm-svn: 57541
This change effects both RecordDecls and CXXRecordDecls, but does not effect EnumDecls (yet).
The motivation of this patch is as follows:
- Capture more source information, necessary for refactoring/rewriting clients.
- Pave the way to resolve ownership issues with RecordDecls with the forthcoming
addition of DeclGroups.
Current caveats:
- Until DeclGroups are in place, we will leak RecordDecls not explicitly
referenced by the AST. For example:
typedef struct { ... } x;
The RecordDecl for the struct will be leaked because the TypedefDecl doesn't
refer to it. This will be solved with DeclGroups.
- This patch also (temporarily) breaks CodeGen. More below.
High-level changes:
- As before, TagType still refers to a TagDecl, but it doesn't own it. When
a struct/union/class is first referenced, a RecordType and RecordDecl are
created for it, and the RecordType refers to that RecordDecl. Later, if
a new RecordDecl is created, the pointer to a RecordDecl in RecordType is
updated to point to the RecordDecl that defines the struct/union/class.
- TagDecl and RecordDecl now how a method 'getDefinition()' to return the
TagDecl*/RecordDecl* that refers to the TagDecl* that defines a particular
enum/struct/class/union. This is useful from going from a RecordDecl* that
defines a forward declaration to the RecordDecl* that provides the actual
definition. Note that this also works for EnumDecls, except that in this case
there is no distinction between forward declarations and definitions (yet).
- Clients should no longer assume that 'isDefinition()' returns true from a
RecordDecl if the corresponding struct/union/class has been defined.
isDefinition() only returns true if a particular RecordDecl is the defining
Decl. Use 'getDefinition()' instead to determine if a struct has been defined.
- The main changes to Sema happen in ActOnTag. To make the changes more
incremental, I split off the processing of enums and structs et al into two
code paths. Enums use the original code path (which is in ActOnTag) and
structs use the ActOnTagStruct. Eventually the two code paths will be merged,
but the idea was to preserve the original logic both for comparison and not to
change the logic for both enums and structs all at once.
- There is NO CHAINING of RecordDecls for the same RecordType. All RecordDecls
that correspond to the same type simply have a pointer to that type. If we
need to figure out what are all the RecordDecls for a given type we can build
a backmap.
- The diff in CXXRecordDecl.[cpp,h] is actually very small; it just mimics the
changes to RecordDecl. For some reason 'svn' marks the entire file as changed.
Why is CodeGen broken:
- Codegen assumes that there is an equivalence between RecordDecl* and
RecordType*. This was true before because we only created one RecordDecl* for
a given RecordType*, but it is no longer true. I believe this shouldn't be too
hard to change, but the patch was big enough as it is.
I have tested this patch on both the clang test suite, and by running the static analyzer over Postgresql and a large Apple-internal project (mix of Objective-C and C).
llvm-svn: 55839
The motivation behind this change is that chaining the RecordDecls is simply unnecessary. Once we create multiple RecordDecls for the same struct/union/class, clients that care about all the declarations of the same struct can build a back map by seeing which Decls refer to the same RecordType.
llvm-svn: 55821
- Change constructor and create methods to accept a CXXRecordDecl* (RecordDecl*)
instead of a ScopedDecl* for PrevDecl. This causes the type checking
to be more tight and doesn't break any code.
RecordDecl:
- Don't use the NextDeclarator field in ScopedDecl to represent the previous
declaration. This is a conflated use of the NextDeclarator field, which will
be removed anyway when DeclGroups are fully implemented.
- Instead, represent (a soon to be implemented) chain of RecordDecls using a
NextDecl field. The last RecordDecl in the chain is always the 'defining'
RecordDecl that owns the FieldDecls. The other RecordDecls in the chain
are forward declarations.
llvm-svn: 55640