The OMP_PROC_BIND=spread strategy fails to assign the master thread the
correct place partition after the first parallel region. Other threads in the
hot team will remember their place_partition, but the master's place partition
is restored to what it was before entering the parallel region. So when the hot
team is used for subsequent parallel regions, the master has lost this info.
This fix calls __kmp_partition_places to update only the master thread's place
partition in the spread case when there are no other changes to the hot team.
Patch by Terry Wilmarth
Differential Revision: http://reviews.llvm.org/D20539
llvm-svn: 270890
On Blue Gene/Q, having LIBOMP_USE_ITT_NOTIFY support compiled into a
statically-linked binary causes a failure at runtime because dlopen fails.
This patch changes LIBOMP_USE_ITT_NOTIFY to a cacheable configuration setting
that can be disabled.
Patch by John Mellor-Crummey
Differential Revision: http://reviews.llvm.org/D20517
llvm-svn: 270884
Clang no longer restricts itself to generating microtasks with a small number
of arguments, and so an assembly implementation is required to prevent hitting
the parameter limit present in the C implementation. This adds an
implementation for ppc64[le].
llvm-svn: 270821
Most of this is modifications to check for differences before updating data
fields in team struct. There is also some rearrangement of the team struct.
Patch by Diego Caballero
Differential Revision: http://reviews.llvm.org/D20487
llvm-svn: 270468
These changes allow testing on Windows using clang.exe.
There are two main changes:
1. Only link to -lm when it actually exists on the system
2. Create basic versions of pthread_create() and pthread_join() for windows.
They are not POSIX compliant by any stretch but will allow any existing
and future tests to use pthread_create() and pthread_join() for testing
interactions of libomp with os threads.
Differential Revision: http://reviews.llvm.org/D20391
llvm-svn: 270464
KMP_USE_FUTEX preprocessor definition defined in kmp_lock.h is used
inconsequently throughout LLVM libomp code.
* some .c files that use this define do not include kmp_lock.h file,
in effect guarded part of code are never compiled
* some places in code use architecture-depending preprocessor
logic expressions which effectively disable use of Futex for
AArch64 architecture, all these places should use
'#if KMP_USE_FUTEX' instead to avoid any further confusions
* some places use KMP_HAS_FUTEX which is nowhere defined,
KMP_USE_FUTEX should be used instead
Differential Revision: http://reviews.llvm.org/D19629
llvm-svn: 269642
This patch solves 'Too many args to microtask' problem which occurs
while executing lulesh2.0.3 benchmark on AArch64.
To solve this I had to wrtite AArch64 assembly version of
__kmp_invoke_microtask() function, similar to x86 and x86_64
implementations.
Differential Revision: http://reviews.llvm.org/D19879
llvm-svn: 269399
This change adds a new entry point,
kmp_aligned_malloc(size_t size, size_t alignment), an entry point corresponding
to kmp_malloc() but with the capability to return aligned memory as well.
Other allocator routines have been adjusted so that kmp_free() can be used for
freeing memory blocks allocated by any kmp_*alloc() routine, including the new
kmp_aligned_malloc() routine.
Differential Revision: http://reviews.llvm.org/D19814
llvm-svn: 269365
After hot teams were enabled by default, the library started using levels kept
in the team structure. The levels are broken in case foreign thread exits and
puts its team into the pool which is then re-used by another foreign thread.
The broken behavior observed is when printing the levels for each new team, one
gets 1, 2, 1, 2, 1, 2, etc. This makes the library believe that every other
team is nested which is incorrect. What is wanted is for the levels to be
1, 1, 1, etc.
Differential Revision: http://reviews.llvm.org/D19980
llvm-svn: 269363
This reverts a presumaby-unintentional change in:
r268640 - [STATS] Use partitioned timer scheme
and fixes segfaults in an x86_64 debug build of the runtime library.
llvm-svn: 269259
This patch introduces following:
* TCI_* and TCD_* macros for incrementation and decrementation
* Fix for invalid use of TCR_8 in one expression
Differential Revision: http://reviews.llvm.org/D19880
llvm-svn: 268826
This change removes the current timers with ones that partition time properly.
The current timers are nested, so that if a new timer, B, starts when the
current timer, A, is already timing, A's time will include B's. To eliminate
this problem, the partitioned timers are designed to stop the current timer (A),
let the new timer run (B), and when the new timer is finished, restart the
previously running timer (A). With this partitioning of time, a threads' timers
all sum up to the OMP_worker_thread_life time and can now easily show the
percentage of time a thread is spending in different parts of the runtime or
user code.
There is also a new state variable associated with each thread which tells where
it is executing a task. This corresponds with the timers: OMP_task_*, e.g., if
time is spent in OMP_task_taskwait, then that thread executed tasks inside a
#pragma omp taskwait construct.
The changes are mostly changing the MACROs to use the new PARITIONED_* macros,
the new partitionedTimers class and its methods, and new state logic.
Differential Revision: http://reviews.llvm.org/D19229
llvm-svn: 268640
This debug sections's functionality can be replicated using the environment
variable KMP_TOPOLOGY_METHOD with different values and KMP_AFFINITY=verbose
llvm-svn: 267472
This change has the hwloc_bitmap_list_snprintf() function use the entire buffer
to print the mask. There is no need to shorten the buffer length by 7. It only
needs to be shortened by one byte.
llvm-svn: 267470
I have prepared some patches for LLVM OpenMP runtime, mostly addressing
ARMv8 support. Before I upstream them, I must address legal issues that
arose around my planned contribution. I was advised that before I send any
substantial commit, I need to make sure that LICENSE.txt file in the projects
repository contains a statement submitted by ARM, similar to the one provided
by Intel (see "a license agreement from the copyright/patent holders"). This is
the same situation as with top-level LLVM project: ARM has provided the same
statement in http://llvm.org/svn/llvm-project/llvm/trunk/lib/Target/ARM/LICENSE.TXT file.
Patch by Paul Osmialowski
Differential Revision: http://reviews.llvm.org/D19319
llvm-svn: 267446
The trip count calculation was incorrect for loops with large bounds. For example,
for(int i=-2,000,000,000; i < 2,000,000,000; i+=50000000), the trip count
calculation had overflow (trying to calculate 2,000,000,000 + 2,000,000,000 with
signed integers) and wasn't giving the right value. This patch fixes this error
in the runtime by using unsigned integers instead. There is still a bug in the
clang compiler component because it warns that there is overflow in the
test case file when there isn't. This error isn't there for the Intel Compiler.
So for now, the test case is designated as XFAIL.
Differential Revision: http://reviews.llvm.org/D19078
llvm-svn: 266677
Introduced a counter of parts of an untied task submitted for execution. The
counter controls whether all parts of the task are already finished. The
compiler should generate re-submission of partially executed untied task by
itself before exiting of each task part except for the lexical last part.
Differential Revision: http://reviews.llvm.org/D19026
llvm-svn: 266675
Some codes that use TLS fail intermittently because one thread tries to write
TLS values after the TLS key has been destroyed by another thread. This happens
when one thread executes library shutdown (and destroys TLS keys), while another
thread starts to execute the TLS key destructor routine. Before this change, the
kmp_init_runtime flag was checked before calling pthread_* TLS functions, but
this flag is set to FALSE later than the destruction of the TLS keys, which
leads to failure. The fix is to check kmp_init_gtid instead, as this flag is
unset *before* the destruction of TLS keys.
Differential Revision: http://reviews.llvm.org/D19022
llvm-svn: 266674
ittnotify fix for barrier imbalance time in case tasks exist. In the current
implementation, task execution time is included into aggregated time on a
barrier. This fix calculates task execution time and corrects the arrive time
by subtracting the task execution time.
Since __kmp_invoke_task() can not only be called on a barrier, the field
th.th_bar_arrive_time is used to check if the function was called at the
barrier (th.th_bar_arrive_time != 0). So for this check, th_bar_arrive_time
is set to zero right after the value is used on the barrier.
Differential Revision: http://reviews.llvm.org/D19030
llvm-svn: 266332
This change adds back off logic in the test and set lock for better contended
lock performance. It uses a simple truncated binary exponential back off
function. The default back off parameters are tuned for x86.
The main back off logic has a two loop structure where each is controlled by a
user-level parameter:
max_backoff - limits the outer loop number of iterations.
This parameter should be a power of 2.
min_ticks - the inner spin wait loop number of "ticks" which is system
dependent and should be tuned for your system if you so choose.
The "ticks" on x86 correspond to the time stamp counter,
but on other architectures ticks is a timestamp derived
from gettimeofday().
The user can modify these via the environment variable:
KMP_SPIN_BACKOFF_PARAMS=max_backoff[,min_ticks]
Currently, since the default user lock is a queuing lock,
one would have to also specify KMP_LOCK_KIND=tas to use the test-and-set locks.
Differential Revision: http://reviews.llvm.org/D19020
llvm-svn: 266329
This change has OMP_WAIT_POLICY=active to mean that threads will busy-wait in
spin loops and virtually never go to sleep. OMP_WAIT_POLICY=passive now means
that threads will immediately go to sleep inside a spin loop. KMP_BLOCKTIME was
the previous mechanism to specify this behavior via KMP_BLOCKTIME=0 or
KMP_BLOCKTIME=infinite, but the standard OpenMP environment variable should
also be able to specify this behavior.
Differential Revision: http://reviews.llvm.org/D18577
llvm-svn: 265339
#endif was one line too low. If KMP_USE_ADAPTIVE_LOCKS is 0,
then queuing locks would incorrectly use drdpa lock mechanism.
This is a fix for https://llvm.org/bugs/show_bug.cgi?id=26649
llvm-svn: 264934
Removed reference to "ref ct" in a comment, as ref_ct no longer exists. Also
moved the comment to where the task_team is about to be tested if NULL.
llvm-svn: 264786
The problem is that the definition of kmp_cpuinfo_t contains:
char name [3*sizeof (kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
and kmp_cpuid_t is only defined when compiling for x86.
Differential Revision: http://reviews.llvm.org/D18245
llvm-svn: 264535
For serialized parallel regions, wrong ids were reported. Now the same code is
used as in kmp_dispatch.cpp which emits the correct ids.
Differential Revision: http://reviews.llvm.org/D18348
llvm-svn: 264266