In an upcoming change I will need to make a distinction between section
type (code, data, bss) and permissions. The term that I use for both
of these things is "output characteristics".
Differential Revision: https://reviews.llvm.org/D45799
llvm-svn: 330361
Summary:
This change does three things:
- Try to find the file and line number of an undefined symbol
reference by reading codeview debug info.
- Try to find the name of the function or global variable with the
undefined symbol reference by searching the object file's symbol
table.
- Prints the information in the same style as the ELF linker.
Differential Revision: https://reviews.llvm.org/D45467
llvm-svn: 330235
In COFF, duplicate string literals are merged by placing them in a
comdat whose leader symbol name contains a specific prefix followed
by the hash and partial contents of the string literal. This gives
us an easy way to identify sections containing string literals in
the linker: check for leader symbol names with the given prefix.
Any sections that are identified in this way as containing string
literals may be tail merged. We do so using the StringTableBuilder
class, which is also used to tail merge string literals in the ELF
linker. Tail merging is enabled only if ICF is enabled, as this
provides a signal as to whether the user cares about binary size.
Differential Revision: https://reviews.llvm.org/D44504
llvm-svn: 327668
Summary:
This patch adds some initial support for Windows control flow guard. At
the end of the day, the linker needs to synthesize a table of RVAs very
similar to the structured exception handler table (/safeseh).
Both /safeseh and /guard:cf take sections of symbol table indices
(.sxdata and .gfids$y) and turn them into RVA tables referenced by the
load config struct in the CRT through special symbols.
Reviewers: ruiu, amccarth
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42592
llvm-svn: 324306
If /debug was not specified, readSection will return a null
pointer for debug sections. If the debug section is associative with
another section, we need to make sure that the section returned from
readSection is not a null pointer before adding it as an associative
section.
Differential Revision: https://reviews.llvm.org/D40533
llvm-svn: 319133
With this change, instead of creating a SectionChunk for each section
in the object file, we only create them when we encounter a prevailing
comdat section.
Also change how symbol resolution occurs between comdat symbols. Now
only the comdat leader participates in comdat resolution, and not any
other external associated symbols. This is more in line with how COFF
semantics are defined, and should allow for a more straightforward
implementation of non-ANY comdat types.
On my machine, this change reduces our runtime linking a release
build of chrome_child.dll with /nopdb from 5.65s to 4.54s (median of
50 runs).
Differential Revision: https://reviews.llvm.org/D40238
llvm-svn: 319090
Now that we have only SymbolBody as the symbol class. So, "SymbolBody"
is a bit strange name now. This is a mechanical change generated by
perl -i -pe s/SymbolBody/Symbol/g $(git grep -l SymbolBody lld/ELF lld/COFF)
nd clang-format-diff.
Differential Revision: https://reviews.llvm.org/D39459
llvm-svn: 317370
New lld's files are spread under lib subdirectory, and it isn't easy
to find which files are actually maintained. This patch moves maintained
files to Common subdirectory.
Differential Revision: https://reviews.llvm.org/D37645
llvm-svn: 314719
These are emitted for comm symbols in object files, when targeting
a GNU environment.
Alternatively, just ignore them since we already align CommonChunk
to the natural size of the content (up to 32 bytes). That would only
trade away the possibility to overalign small symbols, which doesn't
sound like something that might not need to be handled?
Differential Revision: https://reviews.llvm.org/D36304
llvm-svn: 310871
In order to get dbghelp to load our pdb, we have to fill in the
PointerToRawData field as well as the AddressOfRawData field. One is the
file offset and the other is the RVA.
llvm-svn: 309900
DWARF debug sections can also contain relocations against symbols in
discared segments. LLD should accept such relocations.
Differential Revision: https://reviews.llvm.org/D35526
llvm-svn: 308315
Summary:
This would have caught the invalid object file I used in my test case in
r307726. The OOB was only caught by ASan later, which is slow and
doesn't work on some platforms. LLD should do some basic input
validation itself. This check isn't perfect, so relocations can reach
OOB by up to seven bytes, but it's better than what we had and probably
cheap.
Reviewers: ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35371
llvm-svn: 307948
This is enough to link a working hello world executable, with
a call to an imported function, a string constant passed to
the imported function, and loads from a global variable.
Differential Revision: https://reviews.llvm.org/D34964
llvm-svn: 307629
Summary:
In order to do this without switching on the symbol kind multiple times,
I created Defined::getChunkAndOffset and use that instead of
SymbolBody::getRVA in the inner relocation loop.
Now we get the symbol's chunk before switching over relocation types, so
we can test if it has been discarded outside the inner relocation type
switch. This also simplifies application of section relative
relocations. Previously we would switch on symbol kind to compute the
RVA, then the relocation type, and then the symbol kind again to get the
output section so we could subtract that from the symbol RVA. Now we
*always* have an OutputSection, so applying SECREL and SECTION
relocations isn't as much of a special case.
I'm still not quite happy with the cleanliness of this code. I'm not
sure what offsets and bases we should be using during the relocation
processing loop: VA, RVA, or OutputSectionOffset.
Reviewers: ruiu, pcc
Reviewed By: ruiu
Subscribers: majnemer, inglorion, llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D34650
llvm-svn: 306566
Summary:
Previously we didn't add debug info chunks to the SparseChunks array, so
they didn't participate in section GC. Now we do.
Reviewers: ruiu
Subscribers: aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D34356
llvm-svn: 305811
Summary:
This is a first step towards getting line info to show up in VS and
windbg. So far, only llvm-pdbutil can parse the PDBs that we produce.
cvdump doesn't like something about our file checksum tables. I'll have
to dig into that next.
This patch adds a new DebugSubsectionRecordBuilder which takes bytes
directly from some other producer, such as a linker, and sticks it into
the PDB. Line tables only need to be relocated. No data needs to be
rewritten.
File checksums and string tables, on the other hand, need to be re-done.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34257
llvm-svn: 305713
Summary:
Adds a "Discarded" bool to SectionChunk to indicate if the section was
discarded by COMDAT deduplication. The Writer still just checks
`isLive()`.
Fixes PR33446
Reviewers: ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34288
llvm-svn: 305582
This ports the ELF linker's symbol table design, introduced in r268178,
to the COFF linker.
Differential Revision: http://reviews.llvm.org/D21166
llvm-svn: 289280
LLD used to take 11.73 seconds to link Clang. Now it is 6.94 seconds.
MSVC link takes 83.02 seconds. Note that ICF is enabled by default on
Windows, so a low latency ICF is more important than in ELF.
llvm-svn: 288487
The load configuration directory is a structure whose size varies as the
OS gains additional functionality. To account for this, the structure's
layout begins with a size field; this allows loaders to know which
fields are available.
However, LLD hard-coded the sizes (112 bytes for 64-bit and 64 for
32-bit). This means that we might not inform the loader of all the
pertinent fields or we might claim that there are more fields than are
actually present.
To correctly account for this, the size field must be loaded from the
_load_config_used symbol.
N.B. The COFF spec is either wrong or out of date, the load
configuration directory is not correctly documented in the
specification: it omits the size field.
llvm-svn: 263543
If a section symbol is not external, that COMDAT section should never
be merge with other sections in other compilation unit. Previously,
we didn't take visibility into account.
Note that COMDAT sections with non-external visibility makes sense
because they can be removed by dead-stripping.
Fixes https://llvm.org/bugs/show_bug.cgi?id=25686
llvm-svn: 254578
There's actually a room to improve this patch. Instead of not merging
sections that have different alignements, we can choose the section that
has the largest alignment requirement among all sections that are otherwise
considered the same. Then all section alignments are satisfied, so we can
merge them.
I don't know if that improvement could make any difference for real-world
input, so I'll leave it alone. Would be interesting to revisit later.
llvm-svn: 248581
The LLD's ICF algorithm is highly parallelizable. This patch does that
using parallel_for_each.
ICF accounted for about one third of total execution time. Previously,
it took 324 ms when self-hosting. Now it takes only 62 ms.
Of course your mileage may vary. My machine is a beefy 24-core Xeon machine,
so you may not see this much speedup. But this optimization should be
effective even for 2-core machine, since I saw speedup (324 ms -> 189 ms)
when setting parallelism parameter to 2.
llvm-svn: 248038
Previously, ICF created a vector for each SectionChunk. The vector
contained pointers to successors, which are namely associative sections
and COMDAT relocation targets. The reason I created vectors is because
I thought that that would make section comparison faster.
It did make the comparison faster. When self-linking, for example, it
saved about 10 ms on each iteration. The time we spent on constructing
the vectors was 124 ms. If we iterate more than 12 times, return from
the investment exceeds the initial cost.
In reality, it usually needs 5 iterations. So we shouldn't construct
the vectors.
llvm-svn: 247963
Only live symbols are written to the symbol table. Because isLive()
returned false if dead-stripping was disabled entirely, only
non-COMDAT sections were written to the symbol table. This patch fixes
the issue.
llvm-svn: 247856
This patch defines ICF class and defines ICF-related functions as
members of the class. By doing this we can move code that are
related only to ICF from SectionChunk to the newly-defined class.
This also eliminates a global variable "NextID".
llvm-svn: 247802
This is a patch to make LLD to be on par with MSVC in terms of ICF
effectiveness. MSVC produces a 27.14MB executable when linking LLD.
LLD previously produced a 27.61MB when self-linking. Now the size
is reduced to 27.11MB. Note that without ICF the size is 29.63MB.
In r247387, I implemented an algorithm that handles section graphs
as cyclic graphs and merge them using SCC. The algorithm did not
always work as intended as I demonstrated in r247721. The new
algortihm implemented in this patch is different from the previous
one. If you are interested the details, you want to read the file
comment of ICF.cpp.
llvm-svn: 247770
Previously, LLD's ICF couldn't merge cyclic graphs. That was unfortunate
because, in COFF, cyclic graphs are not exceptional at all. That is
pretty common.
In this patch, sections are grouped by Tarjan's strongly connected
component algorithm to get acyclic graphs. And then we try to merge
SCCs whose outdegree is zero, and remove them from the graph. This
makes other SCCs to have outdegree zero, so we can repeat the
process until all SCCs are removed. When comparing two SCCs, we handle
cycles properly.
This algorithm works better than previous one. Previously, self-linking
produced a 29.0MB executable. It now produces a 27.7MB. There's still some
gap compared to MSVC linker which produces a 27.1MB executable for the
same input. So the gap is narrowed, but still LLD is not on par with MSVC.
I'll investigate that later.
llvm-svn: 247387
Identical COMDAT Folding is a feature to merge COMDAT sections
by contents. Two sections are considered the same if their contents,
relocations, attributes, etc, are all the same.
An interesting fact is that MSVC linker takes "iterations" parameter
for ICF because the algorithm they are using is iterative. Merging
two sections could make more sections to be mergeable because
different relocations could now point to the same section. ICF is
repeated until we get a convergence (until no section can be merged).
This algorithm is not fast. Usually it needs three iterations until a
convergence is obtained.
In the new algorithm implemented in this patch, we consider sections
and relocations as a directed acyclic graph, and we try to merge
sections whose outdegree is zero. Sections with outdegree zero are then
removed from the graph, which makes other sections to have outdegree
zero. We repeat that until all sections are processed. In this
algorithm, we don't iterate over the same sections many times.
There's an apparent issue in the algorithm -- the section graph is
not guaranteed to be acyclic. It's actually pretty often cyclic.
So this algorithm cannot eliminate all possible duplicates.
That's OK for now because the previous algorithm was not able to
eliminate cycles too. I'll address the issue in a follow-up patch.
llvm-svn: 246878
Previously, we calculated our own hash values for section contents.
Of coruse that's slow because we had to access all bytes in sections.
Fortunately, COFF objects usually contain hash values for COMDAT
sections. We can use that to speed up Identical COMDAT Folding.
llvm-svn: 246869
This is more convenient than the offset from the start of the file as we
don't have to worry about it changing when we move the output section.
This is a port of r245008 from ELF.
llvm-svn: 245018