When we have a debug map we have an executable with a bunch of STAB symbols and each source file has a N_SO symbol which scopes a bunch of symbols inside of it. We can use this to our advantage here when looking for the complete definition of an objective C class by looking for a symbol whose name matches the class name and whose type is eSymbolTypeObjCClass. If we find one, that symbol will be contained within a N_SO symbol. This symbol gets turned into a symbol whose type is eSymbolTypeSourceFile and that symbol will contain the eSymbolTypeObjCClass which helps us to locate the correct .o file and allows us to only look in that file.
To further accelerate things, if we are looking for the implementation, we can avoid looking at all .o files if we don't find a matching symbol because we have a debug map, which means the objective C symbol for the class can't have been stripped, so we can safely not search all remaining .o files. This will save us lots of time when trying to look for "NSObject" and any other AppKit and Foundation classes that we never have implementation definitions for.
<rdar://problem/19234225>
llvm-svn: 230562
Summary:
This patch enables evaluation of DWARF expressions setting the CFA during stack unwinding.
This makes TestSigtrampUnwind "almost" pass on linux. I am not enabling the test yet since the
symbol name for the signal trampoline does not get resolved properly due to a different bug, but
apart from that, the backtrace is sane.
I am unsure how this change affects Mac. I think it makes the unwinder prefer the DWARF unwind
plan instead of some custom platform-dependant plan. However, it does not affect the end result
- the stack unwinding works as expected.
Reviewers: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7792
llvm-svn: 230211
Summary:
This change refactors UnwindPlan::Row to be able to store the fact that the CFA is value is set
by evaluating a dwarf expression (DW_CFA_def_cfa_expression). This is achieved by creating a new
class CFAValue and moving all CFA setting/getting code there. Note that code using the new
CFAValue::isDWARFExpression is not yet present and will be added in a follow-up patch. Therefore,
this patch should not change the functionality in any way.
Test Plan: Ran tests on Mac and Linux. No regressions detected.
Reviewers: jasonmolenda, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7755
llvm-svn: 230210
changing it was in r219544 - after living on that for a few
months, I wanted to take another crack at this.
The disassembly-format setting still exists and the old format
can be user specified with a setting like
${current-pc-arrow}${addr-file-or-load}{ <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>}:
This patch was discussed in http://reviews.llvm.org/D7578
<rdar://problem/19726421>
llvm-svn: 229186
There was a test in the test suite that was triggering the backtrace logging output that requested that the client pass an execution context. Sometimes we need the process for Objective C types because our static notion of the type might not align with the reality when being run in a live runtime.
Switched from an "ExecutionContext *" to an "ExecutionContextScope *" for greater ease of use.
llvm-svn: 228892
- you have a type that contains a typedef to a VectorType or an ExtVectorType
- that type is returned from an ARM function that LLDB steps over so we try to figure out the return type
- we try to determine if the type is a homogeneous aggregate type and we crash
We get not using getAs() when we should have been and using llvm::cast caused an assertion crash when the typedef type didn't return a valid VectorType or ExtVectorType.
<rdar://problem/19646550>
llvm-svn: 228771
The problem occurred when we had incorrect address ranges in the debug map that included the padding between functions causing the end address of a line table entry to fall into an inlinked (next function) address range.
<rdar://problem/19721144>
llvm-svn: 228707
This was causing code that opened multiple targets to try and get a path to debugserver from the GDB remote communication class, and it would get the LLDB path and some instances would return empty strings and it would cause debugserver to not be found.
<rdar://problem/18756927>
llvm-svn: 227935
And since enough of these are doing the right thing, add a test case to verify we are doing the right thing with freeze drying ObjC object types
Fixes rdar://18092770
llvm-svn: 227282
This is necessary because the byte size of an ObjC class type is not reliably statically knowable (e.g. because superclasses sit deep in frameworks that we have no debug info for)
The lack of reliable size info is a problem when trying to freeze-dry an ObjC instance (not the pointer, the pointee)
This commit lays the foundation for having language runtimes help in figuring out byte sizes, and having ClangASTType ask for runtime help
No feature change as no runtime actually implements the logic, and nowhere is an ExecutionContext passed in yet
llvm-svn: 227274
i386/x86_64 functions. The stack size was being multiplied by the
pointer size incorrectly. The register permutation placeholders
(UNWIND_X86_REG_NONE) were decrementing the stack offset of the
saved registers when it should not have been.
<rdar://problem/19570035>
llvm-svn: 226889
The refactor was motivated by some comments that Greg made
http://reviews.llvm.org/D6918
and also to break a dependency cascade that caused functions linking
in string->int conversion functions to pull in most of lldb
llvm-svn: 226199
This is done by adding a "Variable *" to SymbolContext and allowing SymbolFile::ResolveSymbolContext() so if an address is resolved into a symbol context, we can include the global or static variable for that address.
This means you can now find global variables that are merged globals when doing a "image lookup --verbose --address 0x1230000". Previously we would resolve a symbol and show "_MergedGlobals123 + 1234". But now we can show the global variable name.
The eSymbolContextEverything purposely does not include the new eSymbolContextVariable in its lookup since stack frame code does many lookups and we don't want it triggering the global variable lookups.
<rdar://problem/18945678>
llvm-svn: 226084
step through the complete function looking for any epilogue
instructions. If we find an epilogue sequence, re-instate
the correct unwind instructions if there is more code past
that epilogue -- this will correctly handle an x86 function
with multiple epilogues in it.
NB there is still a bug with the "eh_frame augmented"
UnwindPlans and mid-function epilogues. Looking at that next.
<rdar://problem/18863406>
llvm-svn: 225770
This completes the compact unwind support for x86 targets.
I'm still skipping the UNWIND_X86_64_MODE_STACK_IND encodings for
x86_64 right now because clang was emitting bad data for this form
until it was fixed in r217020 circa Sep 2014.
arm64 parsing still needs to be added.
llvm-svn: 224698
Most of the changes are to the FuncUnwinders class -- as we've added
more types of unwind information, the way this class was written was
making it a mess to maintain. Instead of trying to keep one
"non-call site" unwind plan and one "call site" unwind plan, track
all the different types of unwind plans we can possibly retrieve for
each function and have the call-site/non-call-site accessor methods
retrieve those.
Add a real "fast unwind plan" for x86_64 / i386 -- when doing an
unwind through a function, this only has to read the first 4 bytes
to tell if the function has a standard prologue sequence. If so,
we can use the architecture default unwind plan to backtrace
through this function. If we try to retrieve the save location for
other registers later on, a real unwind plan will be used. This
one is just for doing fast backtraces.
Change the compact unwind plan importer to fill in the valid address
range it is valid for.
Compact unwind, in theory, may have multiple entries for a single
function. The FuncUnwinders rewrite includes the start of supporting
this correctly. In practice compact unwind encodings are used for
the entire range of the function today -- in fact, sometimes the same
encoding is used for multiple functions that have the same unwind
rules. But I want to handle a single function that has multiple
different compact unwind UnwindPlans eventually.
llvm-svn: 224689
When lldb has a binary with protected section contents,
don't use the on-disk representation of that compact
uwnind -- read it only out of live memory where it has
been decrypted.
llvm-svn: 224670
The compact unwind importer is getting the wrong unwind info for one
case that I found. I haven't been able to fix the problem tonight
and I don't want to leave TOT behaving incorrectly, so just ignore
compact unwind until I can get to the bottom of this.
llvm-svn: 224321
section for x86_64 and i386 targets on Darwin systems. Currently only the
compact unwind encoding for normal frame-using functions is supported but it
will be easy handle frameless functions when I have a bit more free time to
test it. The LSDA and personality routines for functions are also retrieved
correctly for functions from the compact unwind section.
This new code is very fresh -- it passes the lldb testsuite and I've done
by-hand inspection of many functions and am getting correct behavior for all
of them. There may need to be some bug fixing over the next couple weeks as
I exercise and test it further. But I think it's fine right now so I'm
committing it.
<rdar://problem/13220837>
llvm-svn: 223625
encounter clang::ExternalASTSources that are not instances
of ClangExternalASTSourceCommon. We used to blithely
assume that all are, and so we could use static_cast<>.
That's no longer the case, so we have to have these AST
sources register themselves.
llvm-svn: 223560
support to LLDB. It includes the following:
- Changed DeclVendor to TypeVendor.
- Made the ObjCLanguageRuntime provide a DeclVendor
rather than a TypeVendor.
- Changed the consumers of TypeVendors to use
DeclVendors instead.
- Provided a few convenience functions on
ClangASTContext to make that easier.
llvm-svn: 223433
retrieves the personality routine addr and the
LSDA addr. Don't bother checking with the
"non-call site" unwind plan - this kind of
information is only going to come from the
call site unwind plan.
llvm-svn: 222226
eh_frame data. These two pieces of information are used in the
process of exception handler unwinding on SysV ABI systems.
This patch reads the data from the eh_frame section
(DWARFCallFrameInfo.cpp), allows for it to be saved & read out
of a given UnwindPlan (UnwindPlan.h, UnwindPlan.cpp) - as well
as printing the information in the UnwindPlan::Dump method - and
adds methods to the FuncUnwinders object so that higher levels
can query if a given function has an LSDA / personality routine
defined.
It's only lightly tested, but seems to be working correctly as long
as your have this information in eh_frame. Does not address getting
this information from compact unwind yet on Darwin systems.
<rdar://problem/18742797>
llvm-svn: 222214
Fixed include:
- Change Platform::ResolveExecutable(...) to take a ModuleSpec instead of a FileSpec + ArchSpec to help resolve executables correctly when we have just a path + UUID (no arch).
- Add the ability to set the listener in SBLaunchInfo and SBAttachInfo in case you don't want to use the debugger as the default listener.
- Modified all places that use the SBLaunchInfo/SBAttachInfo and the internal ProcessLaunchInfo/ProcessAttachInfo to not take a listener as a parameter since it is in the launch/attach info now
- Load a module's sections by default when removing a module from a target. Since we create JIT modules for expressions and helper functions, we could end up with stale data in the section load list if a module was removed from the target as the section load list would still have entries for the unloaded module. Target now has the following functions to help unload all sections a single or multiple modules:
size_t
Target::UnloadModuleSections (const ModuleList &module_list);
size_t
Target::UnloadModuleSections (const lldb::ModuleSP &module_sp);
llvm-svn: 222167
relative paths, like:
/whatever/llvm/lib/Sema/../../include/llvm/Sema/
That causes problems with our type uniquing, since we use the declaration file
and line as one component of the uniquing, and different ways of getting to the
same file will have different directory spellings, though they are functionally
equivalent. We end up with two copies of the exact same type because of this,
and that makes the expression parser give "duplicate type" errors.
I added a method to resolve paths with ../ in them and used that in the FileSpec::Equals,
for comparing Declarations and for doing Breakpoint compares as well, since they also
suffer from this if you specify breakpoints by full path (since nobody knows what
../'s to insert...)
<rdar://problem/18765814>
llvm-svn: 222075
Summary:
PowerPC handles the stack chain with the current stack pointer being a pointer
to the backchain (CFA). LLDB currently has no way of handling this, so this
adds a "CFA is dereferenced from a register" type.
Discussed with Jason Molenda, who also provided the initial patch for this.
Reviewers: jasonmolenda
Reviewed By: jasonmolenda
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D6182
llvm-svn: 221788
let's let lldb try the arch default unwind every time but not destructively --
it doesn't permanently replace the main unwind method for that function from
now on.
This fix is for <rdar://problem/18683658>.
I tested it against Ryan Brown's go program test case and also a
collection of core files of tricky unwind scenarios
<rdar://problem/15664282> <rdar://problem/15835846>
<rdar://problem/15982682> <rdar://problem/16099440>
<rdar://problem/17364005> <rdar://problem/18556719>
that I've fixed over the last 6-9 months.
llvm-svn: 221238
output style can be customized. Change the built-in default to be
more similar to gdb's disassembly formatting.
The disassembly-format for a gdb-like output is
${addr-file-or-load} <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>:
The disassembly-format for the lldb style output is
{${function.initial-function}{${module.file.basename}`}{${function.name-without-args}}:\n}{${function.changed}\n{${module.file.basename}`}{${function.name-without-args}}:\n}{${current-pc-arrow} }{${addr-file-or-load}}:
The two backticks in the lldb style formatter triggers the sub-expression evaluation in
CommandInterpreter::PreprocessCommand() so you can't use that one as-is ... changing to
use ' characters instead of ` would work around that.
<rdar://problem/9885398>
llvm-svn: 219544
works, as do breakpoints, run and pause, display zeroth frame.
See
http://reviews.llvm.org/D5503
for a fuller description of the changes in this commit.
llvm-svn: 218596
For the Objective-C case, we do not have a "function type" notion, so we actually end up wrapping the clang ObjCMethodDecl in the Impl object, and ask function-y questions of it
In general, you can always ask for return type, number of arguments, and type of each argument using the TypeMemberFunction layer - but in the C++ case, you can also acquire a Type object for the function itself, which instead you can't do in the Objective-C case
llvm-svn: 218132