Currently codegen crashes trying to emit casting to bool &. It happens because bool type is converted to i1 and later then lvalue for reference is converted to i1*. But when codegen tries to load this lvalue it crashes trying to load value from this i1*.
Differential Revision: http://reviews.llvm.org/D13325
llvm-svn: 249534
Ensure that the vptr store in the most-derived constructor is not behind
an invariant group barrier. Previously, the base-most vptr store would
be the one behind no barrier, and that could result in the creator of
the object thinking it had the base-most vtable.
This bug caused clang call pure virtual functions when called from
constructor body.
http://reviews.llvm.org/D13373
llvm-svn: 249197
This reverts commit r248982 as it was breaking the ARM buildbots and the fix didn't work.
This reverts commit r248984, the fix that didn't work.
llvm-svn: 249005
someone thought all the bits would be value bits in this case.
Also fix the wording of the warning -- it claimed that the width of 'bool' is
8, which is not correct; the width is 1 bit, whereas the size is 8 bits in our
implementation.
llvm-svn: 248435
This doesn't quite get alias template equivalence right yet, but handles the
egregious cases where we would silently give the wrong answers.
llvm-svn: 248431
This avoids building a fake LLVM IR global variable just to ferry an i32
down into LLVM codegen. It also puts a nail in the coffin of using MS
ABI C++ EH with landingpads, since now we'll assert in the lpad code
when flags are present.
llvm-svn: 247843
ptr in dtor.
Summary:
After destruction, invocation of virtual functions prevented
by poisoning vtable pointer.
Reviewers: eugenis, kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12712
Fixed testing callback emission order to account for vptr.
Poison vtable in either complete or base dtor, depending on
if virtual bases exist. If virtual bases exist, poison in
complete dtor. Otherwise, poison in base.
Remove commented-out block.
llvm-svn: 247762
It is dangerous to do LTO on code with strict-vtable-pointers, because
one module has invariant.group.barriers, and the other one not.
In the future I want to just strip all invariant.group metadata from
vptrs loads/stores and get rid of invariant.group.barrier calls.
http://reviews.llvm.org/D12580
llvm-svn: 247724
MS compiler ignores calling convention modifiers for structors. This patch makes
clang do the same (for MS ABI). This fixes PR24595 and makes vswriter.h header
(from Windows SDK 8.1) compilable.
Differential Revision: http://reviews.llvm.org/D12402
llvm-svn: 247619
Current implementation may end up emitting an undefined reference for
an "inline __attribute__((always_inline))" function by generating an
"available_externally alwaysinline" IR function for it and then failing to
inline all the calls. This happens when a call to such function is in dead
code. As the inliner is an SCC pass, it does not process dead code.
Libc++ relies on the compiler never emitting such undefined reference.
With this patch, we emit a pair of
1. internal alwaysinline definition (called F.alwaysinline)
2a. A stub F() { musttail call F.alwaysinline }
-- or, depending on the linkage --
2b. A declaration of F.
The frontend ensures that F.inlinefunction is only used for direct
calls, and the stub is used for everything else (taking the address of
the function, really). Declaration (2b) is emitted in the case when
"inline" is meant for inlining only (like __gnu_inline__ and some
other cases).
This approach, among other nice properties, ensures that alwaysinline
functions are always internal, making it impossible for a direct call
to such function to produce an undefined symbol reference.
This patch is based on ideas by Chandler Carruth and Richard Smith.
llvm-svn: 247494
Current implementation may end up emitting an undefined reference for
an "inline __attribute__((always_inline))" function by generating an
"available_externally alwaysinline" IR function for it and then failing to
inline all the calls. This happens when a call to such function is in dead
code. As the inliner is an SCC pass, it does not process dead code.
Libc++ relies on the compiler never emitting such undefined reference.
With this patch, we emit a pair of
1. internal alwaysinline definition (called F.alwaysinline)
2a. A stub F() { musttail call F.alwaysinline }
-- or, depending on the linkage --
2b. A declaration of F.
The frontend ensures that F.inlinefunction is only used for direct
calls, and the stub is used for everything else (taking the address of
the function, really). Declaration (2b) is emitted in the case when
"inline" is meant for inlining only (like __gnu_inline__ and some
other cases).
This approach, among other nice properties, ensures that alwaysinline
functions are always internal, making it impossible for a direct call
to such function to produce an undefined symbol reference.
This patch is based on ideas by Chandler Carruth and Richard Smith.
llvm-svn: 247465
We used to only select an inheritance model if the pointer to member was
nullptr. Instead, select a model regardless of the member pointer's
value.
N.B. This bug was exposed by making member pointers report true for
isIncompleteType but has been latent since the member pointer scheme's
inception.
llvm-svn: 247464
It seems that there is small bug, and we can't generate assume loads
when some virtual functions have internal visibiliy
This reverts commit 982bb7d966947812d216489b3c519c9825cacbf2.
llvm-svn: 247332
Given a reference to a pointer to member whose class's inheritance model
is unspecified, make sure we come up with an inheritance model in
plausible places. One place we were missing involved LValue to RValue
conversion, another involved unary type traits.
llvm-svn: 247248
This flag causes the compiler to emit bit set entries for functions as well
as runtime bitset checks at indirect call sites. Depends on the new function
bitset mechanism.
Differential Revision: http://reviews.llvm.org/D11857
llvm-svn: 247238
Generating call assume(icmp %vtable, %global_vtable) after constructor
call for devirtualization purposes.
For more info go to:
http://lists.llvm.org/pipermail/cfe-dev/2015-July/044227.html
Edit:
Fixed version because of PR24479.
After this patch got reverted because of ScalarEvolution bug (D12719)
Merged after John McCall big patch (Added Address).
http://reviews.llvm.org/D11859
llvm-svn: 247199
We know that a reference can always be dereferenced. However, we don't
always know the number of bytes if the reference's pointee type is
incomplete. This case was correctly handled but we didn't consider the
case where the type is complete but we cannot calculate its size for ABI
specific reasons. In this specific case, a member pointer's size is
available only under certain conditions.
This fixes PR24703.
llvm-svn: 247188
Summary:
If class or struct has not declared a destructor,
no destructor is emitted, and members are not poisoned
after destruction. This case highlights bug in current
implementation of use-after-dtor poisoning (detailed
in https://github.com/google/sanitizers/issues/596).
Reviewers: eugenis, kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12616
Only check simplest object for existence of sanitizing callback.
Rename test.
llvm-svn: 247025
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
This fixes an issue raised in D12412, where we generated invalid IR.
Thanks to Vedant Kumar for coming up with the initial work around.
Differential Revision: http://reviews.llvm.org/D12412
llvm-svn: 246880
Summary:
Dtor sanitization handled amidst other dtor cleanups,
between cleaning bases and fields. Sanitizer call pushed onto
stack of cleanup operations.
Reviewers: eugenis, kcc
Differential Revision: http://reviews.llvm.org/D12022
Refactoring dtor sanitizing emission order.
- Support multiple inheritance by poisoning after
member destructors are invoked, and before base
class destructors are invoked.
- Poison for virtual destructor and virtual bases.
- Repress dtor aliasing when sanitizing in dtor.
- CFE test for dtor aliasing, and repression of aliasing in dtor
code generation.
- Poison members on field-by-field basis, with collective poisoning
of trivial members when possible.
- Check msan flags and existence of fields, before dtor sanitizing,
and when determining if aliasing is allowed.
- Testing sanitizing bit fields.
llvm-svn: 246815
This implements basic support for compiling (though not yet assembling
or linking) for a WebAssembly target. Note that ABI details are not yet
finalized, and may change.
Differential Revision: http://reviews.llvm.org/D12002
llvm-svn: 246814