On Power9, we don't have patterns to select the following intrinsics:
llvm.ppc.vsx.stxvw4x.be
llvm.ppc.vsx.stxvd2x.be
This patch adds support for these.
Differential Revision: https://reviews.llvm.org/D53581
llvm-svn: 346148
Currently, for this node:
vector int test(int a, int b, int c, int d) {
return (vector int) { a, b, c, d };
}
we get this on Power9:
mtvsrdd 34, 5, 3
mtvsrdd 35, 6, 4
vmrgow 2, 3, 2
and this on Power8:
mtvsrwz 0, 3
mtvsrwz 1, 5
mtvsrwz 2, 4
mtvsrwz 3, 6
xxmrghd 34, 1, 0
xxmrghd 35, 3, 2
vmrgow 2, 3, 2
This can be improved to this on LE Power9:
rldimi 3, 4, 32, 0
rldimi 5, 6, 32, 0
mtvsrdd 34, 5, 3
and this on LE Power8
rldimi 3, 4, 32, 0
rldimi 5, 6, 32, 0
mtvsrd 34, 3
mtvsrd 35, 5
xxpermdi 34, 35, 34, 0
This patch updates the TD pattern to generate the optimized sequence for both
Power8 and Power9 on LE and BE.
Differential Revision: https://reviews.llvm.org/D53494
llvm-svn: 345414
Add support to allow bit-casting from f128 to i128 and then
extracting 64 bits from the result.
Differential Revision: https://reviews.llvm.org/D49507
llvm-svn: 345053
For ISD::SIGN_EXTEND_INREG operation of v2i16 and v2i8 types will cause assert because they are registered as custom operation.
So that the type legalization phase will enter the custom hook, which do not handle ISD::SIGN_EXTEND_INREG operation and fall throw into unreachable assert.
Patch By: wuzish (Zixuan Wu)
Differential Revision: https://reviews.llvm.org/D52449
llvm-svn: 344109
Added
__builtin_vsx_scalar_extract_expq
__builtin_vsx_scalar_insert_exp_qp
Builtins should behave the same way as in GCC.
Differential Revision: https://reviews.llvm.org/D48185
llvm-svn: 342910
This commit has caused failures in some internal benchmarks. Temporarily
reverting this patch until the issue can be diagnosed and fixed.
llvm-svn: 340740
To make ISD::VSELECT available(legal) so long as there are altivec instruction,
otherwise it's default behavior is expanding.
Use xxsel to match vselect if vsx is open, or use vsel.
In order to do not write many patterns in td file, promote (for vector it's
bitcast) all other type into v4i32 and only pattern match vselect of v4i32 into
vsel or xxsel.
Patch by wuzish
Differential revision: https://reviews.llvm.org/D49531
llvm-svn: 339779
This patch aims to improve the codegen for vector loads involving the
scalar_to_vector (load X) sequence. Initially, ld->mv instructions were used
for scalar_to_vector (load X), so this patch allows scalar_to_vector (load X)
to utilize:
LXSD and LXSDX for i64 and f64
LXSIWAX for i32 (sign extension to i64)
LXSIWZX for i32 and f64
Committing on behalf of Amy Kwan.
Differential Revision: https://reviews.llvm.org/D48950
llvm-svn: 339260
Adding the FP_ROUND nodes when combining FP_TO_[SU]INT of elements
feeding a BUILD_VECTOR into an FP_TO_[SU]INT of the built vector
loses precision. This patch removes the code that adds these nodes
to true f64 operands. It also adds patterns required to ensure
the code is still vectorized rather than converting individual
elements and inserting into a vector.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38342
Differential Revision: https://reviews.llvm.org/D50121
llvm-svn: 338658
Added __float128 support for a number of rounding operations:
trunc
rint
nearbyint
round
floor
ceil
Differential Revision: https://reviews.llvm.org/D48415
llvm-svn: 336601
Optimize code sequences for integer conversion to fp128 when the integer is a result of:
* float->int
* float->long
* double->int
* double->long
Differential Revision: https://reviews.llvm.org/D48429
llvm-svn: 336316
Non-homogenous aggregates are passed in consecutive GPRs, in GPRs and in memory,
or in memory. This patch ensures that float128 members of non-homogenous
aggregates are passed via VSX registers.
This is done via custom lowering a bitcast of a build_pari(i64,i64) to float128
to a new PPCISD node, BUILD_FP128.
Differential Revision: https://reviews.llvm.org/D48308
llvm-svn: 336310
Legalize and emit code for quad-precision floating point operation conversion of
single-precision value to quad-precision.
Differential Revision: https://reviews.llvm.org/D47569
llvm-svn: 336307
Legalize and emit code for round & convert float128 to double precision and
single precision.
Differential Revision: https://reviews.llvm.org/D46997
llvm-svn: 336299
Implemente patterns to extract HWord and Byte vector elements and convert to
quad-precision.
Differential Revision: https://reviews.llvm.org/D46774
llvm-svn: 333377
The match pattern in the definition of LXSDX is xoaddr, so the Pseudo
instruction XFLOADf64 never gets selected. XFLOADf64 expands to LXSDX/LFDX post
RA based on the register pressure. To avoid ambiguity, we need to remove the
select pattern for LXSDX, same as what was done for LXSD. STXSDX also have
the same issue.
Patch by Qing Shan Zhang (steven.zhang).
Differential Revision: https://reviews.llvm.org/D47178
llvm-svn: 333150
Implemente patterns to extract [Un]signed Word vector element and convert to
quad-precision.
Differential Revision: https://reviews.llvm.org/D46536
llvm-svn: 333115
Implemente patterns to extract [Un]signed DWord vector element and convert to
quad-precision.
Differential Revision: https://reviews.llvm.org/D46333
llvm-svn: 333112
xsrqpi is currently using Z23Form_1.
The instruction format is xsrqpi R,VRT,VRB,RMC.
Rathar than bits 11-15 being used for FRA, it should have
bits 11-14 reserved and bit 15 for R. This patch adds a new
class Z23Form_4 to fix the instruction format.
Differential Revision: https://reviews.llvm.org/D46761
llvm-svn: 332253
Legalize and emit code for truncate and convert float128 to (un)signed short
and (un)signed char.
Differential Revision: https://reviews.llvm.org/D46194
llvm-svn: 331797
Existing DAG combine only handles conversions for FP_TO_SINT:
"{f32, f64} x { i32, i16 }"
This patch simplifies the code to handle:
"{ FP_TO_SINT, FP_TO_UINT } x { f64, f32 } x { i64, i32, i16, i8 }"
Differential Revision: https://reviews.llvm.org/D46102
llvm-svn: 331778
Legalize and emit code for converting unsigned HWord/Char to QP:
xscvsdqp
xscvudqp
Only covering patterns for unsigned forms cause we don't have part-word
sign-extending integer loads into VSX registers.
Differential Revision: https://reviews.llvm.org/D45494
llvm-svn: 330278
Legalize and emit code for converting (Un)Signed Word to quad-precision via:
xscvsdqp
xscvudqp
Differential Revision: https://reviews.llvm.org/D45389
llvm-svn: 330273
Legalize and emit code for quad-precision floating point operation xscvdpqp
and add option to guard the quad precision operation support.
Differential Revision: https://reviews.llvm.org/D44746
llvm-svn: 328558
A new function getOpcodeForSpill should now be the only place to get
the opcode for a given spilled register.
Differential Revision: https://reviews.llvm.org/D43086
llvm-svn: 328556
The following set of instructions was originally planned to be added for Power 9
and so code was added to support them. However, a decision was made later on to
withdraw support for these instructions in the hardware.
xscmpnedp
xvcmpnesp
xvcmpnedp
This patch removes support for the instructions that were not added.
Differential Revision: https://reviews.llvm.org/D43641
llvm-svn: 325918
This patch extends on to rL307174 to not use the power9 vector extract with
variable index instructions when extracting word element 1. For such cases,
the existing selection of MFVSRWZ provides a better sequence.
Differential Revision: https://reviews.llvm.org/D38287
llvm-svn: 319049
The VSX versions have the advantage of a full 64-register target whereas the FP
ones have the advantage of lower latency and higher throughput. So what we’re
after is using the faster instructions in low register pressure situations and
using the larger register file in high register pressure situations.
The heuristic chooses between the following 7 pairs of instructions.
PPC::LXSSPX vs PPC::LFSX
PPC::LXSDX vs PPC::LFDX
PPC::STXSSPX vs PPC::STFSX
PPC::STXSDX vs PPC::STFDX
PPC::LXSIWAX vs PPC::LFIWAX
PPC::LXSIWZX vs PPC::LFIWZX
PPC::STXSIWX vs PPC::STFIWX
Differential Revision: https://reviews.llvm.org/D38486
llvm-svn: 318651
This patch updates register allocation to enable spilling gprs to
volatile vector registers rather than the stack. It can be enabled
for Power9 with option -ppc-enable-gpr-to-vsr-spills.
Differential Revision: https://reviews.llvm.org/D34815
llvm-svn: 313886
Add codegen for VSX word extract conversion from signed/unsigned to single/double
precision.
For UINT_TO_FP:
Extract word unsigned and convert to float was implemented in https://reviews.llvm.org/D20239.
Here we will add the missing extract integer and conversion to double. This
utilizes the new P9 instruction xxextractuw to extracting an integer element
when the result will be converted to double thereby saving 2 direct moves
(VSR <-> GPR).
For SINT_TO_FP:
We will implement the following sequence which will also reduce the number of
instructions by saving 2 direct moves.
v4i32->f32:
xxspltw
xvcvsxwsp
xscvspdpn
v4i32->f64:
xxspltw
xvcvsxwdp
Differential Revision: https://reviews.llvm.org/D35859
llvm-svn: 310866
As outlined in the PR, we didn't ensure that displacements for DQ-Form
instructions are multiples of 16. Since the instruction encoding encodes
a quad-word displacement, a sub-16 byte displacement is meaningless and
ends up being encoded incorrectly.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33671.
Differential Revision: https://reviews.llvm.org/D35007
llvm-svn: 307934
This patch adds the exploitation for new power 9 instructions which extract
variable elements from vectors:
VEXTUBLX
VEXTUBRX
VEXTUHLX
VEXTUHRX
VEXTUWLX
VEXTUWRX
Differential Revision: https://reviews.llvm.org/D34032
Commit on behalf of Zaara Syeda (syzaara@ca.ibm.com)
llvm-svn: 307174
This patch adds on to the exploitation added by https://reviews.llvm.org/D33510.
This now catches build vector nodes where the inputs are coming from sign
extended vector extract elements where the indices used by the vector extract
are not correct. We can still use the new hardware instructions by adding a
shuffle to move the elements to the correct indices. I introduced a new PPCISD
node here because adding a vector_shuffle and changing the elements of the
vector_extracts was getting undone by another DAG combine.
Commit on behalf of Zaara Syeda (syzaara@ca.ibm.com)
Differential Revision: https://reviews.llvm.org/D34009
llvm-svn: 307169
Power9 has instructions that will reverse the bytes within an element for all
sizes (half-word, word, double-word and quad-word). These can be used for the
vec_revb builtins in altivec.h. However, we implement these to match vector
shuffle nodes as that will cover both the builtins and vector shuffles that
occur in the SDAG through other means.
Differential Revision: https://reviews.llvm.org/D33690
llvm-svn: 305214
There are some VectorShuffle Nodes in SDAG which can be selected to XXPERMDI
Instruction, this patch recognizes them and does the selection to improve
the PPC performance.
Differential Revision: https://reviews.llvm.org/D33404
llvm-svn: 304298
Summary
clang -c -mcpu=pwr9 test/CodeGen/PowerPC/build-vector-tests.ll causes an assertion failure during the binary encoding.
The failure occurs when a D-form load instruction takes two register operands instead of a register + an immediate.
This patch fixes the problem and also adds an assertion to catch this failure earlier before the binary encoding (i.e. during lit test).
The fix is from Nemanja Ivanovic @nemanjai.
Differential Revision: https://reviews.llvm.org/D33482
llvm-svn: 304133
There are some VectorShuffle Nodes in SDAG which can be selected to XXSLDWI
instruction, this patch recognizes them and does the selection to improve the
PPC performance.
llvm-svn: 303822