Libc++ is used as a system library on macOS and iOS (amongst others). In order
for users to be able to compile a binary that is intended to be deployed to an
older version of the platform, clang provides the
availability attribute <https://clang.llvm.org/docs/AttributeReference.html#availability>_
that can be placed on declarations to describe the lifecycle of a symbol in the
library.
See docs/DesignDocs/AvailabilityMarkup.rst for more information.
Differential Revision: https://reviews.llvm.org/D31739
llvm-svn: 302172
MSVC has compiler warnings C4127 "conditional expression is constant" (enabled
by /W4) and C6326 "Potential comparison of a constant with another constant"
(enabled by /analyze). They're potentially useful, although they're slightly
annoying to library devs who know what they're doing. In the latest version of
the compiler, C4127 is suppressed when the compiler sees simple tests like
"if (name_of_thing)", so extracting comparison expressions into named
constants is a workaround. At the same time, using std::integral_constant
avoids C6326, which doesn't look at template arguments.
test/std/containers/sequences/vector.bool/emplace.pass.cpp
Replace 1 == 1 with true, which is the same as far as the library is concerned.
Fixes D28837.
llvm-svn: 292432
There were two problems with the initial fix.
1. The added tests flushed out that we misconfigured _LIBCPP_EXPLICIT with GCC.
2. Because the boolean type was a member function template it caused weird link
errors. I'm assuming due to the vague linkage rules. This time the bool type
is a non-template member function pointer. That seems to have fixed the
failing tests. Plus it will end up generating less symbols overall, since
the bool type is no longer per instantiation.
original commit message below
-----------------------------
std::basic_ios has an operator bool(). In C++11 and later
it is explicit, and only allows contextual implicit conversions.
However explicit isn't available in C++03 which causes std::istream (et al)
to have an implicit conversion to int. This can easily cause ambiguities
when calling operator<< and operator>>.
This patch uses a "bool-like" type in C++03 to work around this. The
"bool-like" type is an arbitrary pointer to member function type. It
will not convert to either int or void*, but will convert to bool.
llvm-svn: 290754
std::basic_ios has an operator bool(). In C++11 and later
it is explicit, and only allows contextual implicit conversions.
However explicit isn't available in C++03 which causes std::istream (et al)
to have an implicit conversion to int. This can easily cause ambiguities
when calling operator<< and operator>>.
This patch uses a "bool-like" type in C++03 to work around this. The
"bool-like" type is an arbitrary pointer to member function type. It
will not convert to either int or void*, but will convert to bool.
llvm-svn: 290750
Certain source control systems like to set the read-only bit on their files,
which interferes with opening "test.dat" for both input and output.
Fortunately, we can work around this without losing test coverage.
Now, the ifstream.cons tests have comments referring to the ofstream.cons tests.
There, we're creating writable files (not checked into source control),
where the ifstream constructor tests will succeed.
Fixes D26814.
llvm-svn: 289463
test/std/input.output/iostream.format/input.streams/istream.unformatted/get.pass.cpp
Add static_cast<char> because basic_istream::get() returns int_type (N4606 27.7.2.3 [istream.unformatted]/4).
test/std/input.output/iostream.format/output.streams/ostream.formatted/ostream.inserters.arithmetic/minus1.pass.cpp
Add static_cast<char> because toupper() returns int (C11 7.4.2.2/1).
test/std/iterators/stream.iterators/ostream.iterator/ostream.iterator.ops/assign_t.pass.cpp
This test is intentionally writing doubles to ostream_iterator<int>.
It's silencing -Wliteral-conversion for Clang, so I'm adding C4244 silencing for MSVC.
test/std/language.support/support.limits/limits/numeric.limits.members/infinity.pass.cpp
Given `extern float zero;`, the expression `1./zero` has type double, which emits a truncation warning
when being passed to test<float>() taking float. The fix is to say `1.f/zero` which has type float.
test/std/numerics/complex.number/cmplx.over/arg.pass.cpp
test/std/numerics/complex.number/cmplx.over/norm.pass.cpp
These tests were constructing std::complex<double>(x, 0), emitting truncation warnings when x is long long.
Saying static_cast<double>(x) avoids this.
test/std/numerics/rand/rand.eng/rand.eng.lcong/seed_result_type.pass.cpp
This was using `int s` to construct and seed a linear_congruential_engine<T, stuff>, where T is
unsigned short/unsigned int/unsigned long/unsigned long long. That emits a truncation warning in the
unsigned short case. Because the range [0, 20) is tiny and we aren't doing anything else with the index,
we can just iterate with `T s`.
test/std/re/re.traits/value.pass.cpp
regex_traits<wchar_t>::value()'s first parameter is wchar_t (N4606 28.7 [re.traits]/13). This loop is
using int to iterate through ['g', 0xFFFF), emitting a truncation warning from int to wchar_t
(which is 16-bit for some of us). Because the bound is exclusive, we can just iterate with wchar_t.
test/std/strings/basic.string/string.cons/size_char_alloc.pass.cpp
This test is a little strange. It's trying to verify that basic_string's (InIt, InIt) range constructor
isn't confused by "N copies of C" when N and C have the same integral type. To do this, it was
testing (100, 65), but that eventually emits truncation warnings from int to char. There's a simple way
to avoid this - passing (static_cast<char>(100), static_cast<char>(65)) also exercises the disambiguation.
(And 100 is representable even when char has a signed range.)
test/std/strings/string.view/string.view.hash/string_view.pass.cpp
Add static_cast<char_type> because `'0' + i` has type int.
test/std/utilities/function.objects/bind/func.bind/func.bind.bind/nested.pass.cpp
What's more horrible than nested bind()? pow() overloads! This operator()(T a, T b) was assuming that
std::pow(a, b) can be returned as T. (In this case, T is int.) However, N4606 26.9.1 [cmath.syn]/2
says that pow(int, int) returns double, so this was truncating double to int.
Adding static_cast<T> silences this.
test/std/utilities/function.objects/unord.hash/integral.pass.cpp
This was iterating `for (int i = 0; i <= 5; ++i)` and constructing `T t(i);` but that's truncating
when T is short. (And super truncating when T is bool.) Adding static_cast<T> silences this.
test/std/utilities/utility/exchange/exchange.pass.cpp
First, this was exchanging 67.2 into an int, but that's inherently truncating.
Changing this to static_cast<short>(67) avoids the truncation while preserving the
"what if T and U are different" test coverage.
Second, this was exchanging {} with the explicit type float into an int, and that's also
inherently truncating. Specifying short is just as good.
test/std/utilities/utility/pairs/pairs.spec/make_pair.pass.cpp
Add static_cast<short>. Note that this affects template argument deduction for make_pair(),
better fulfilling the test's intent. For example, this was saying
`typedef std::pair<int, short> P1; P1 p1 = std::make_pair(3, 4);` but that was asking
make_pair() to return pair<int, int>, which was then being converted to pair<int, short>.
(pair's converting constructors are tested elsewhere.)
Now, std::make_pair(3, static_cast<short>(4)) actually returns pair<int, short>.
(There's still a conversion from pair<nullptr_t, short> to pair<unique_ptr<int>, short>.)
Fixes D27544.
llvm-svn: 289111
test/std/algorithms/alg.modifying.operations/alg.random.shuffle/random_shuffle_rand.pass.cpp
(Affects 64-bit architectures.) Include <cstddef> so we can take/return std::ptrdiff_t
(instead of int) in random_shuffle()'s RNG. (C++14 D.12 [depr.alg.random.shuffle]/2 says that
difference_type is used, and we're shuffling a plain array.)
test/std/algorithms/alg.sorting/alg.sort/sort/sort.pass.cpp
test/std/algorithms/alg.sorting/alg.sort/stable.sort/stable_sort.pass.cpp
(Affects 64-bit architectures.) Include <iterator> because we're already using iterator_traits.
Then, store the result of subtracting two RanIts as difference_type instead of long
(which truncates on LLP64 architectures like MSVC x64).
test/std/containers/sequences/forwardlist/forwardlist.ops/splice_after_flist.pass.cpp
test/std/containers/sequences/forwardlist/forwardlist.ops/splice_after_one.pass.cpp
(Affects 64-bit architectures.) Include <cstddef> so we can store the result of
subtracting two pointers as std::ptrdiff_t (instead of int).
test/std/input.output/iostream.format/input.streams/istream.unformatted/ignore_0xff.pass.cpp
(Affects 32-bit architectures.) Sometimes, size_t is too small. That's the case here,
where tellg() returns pos_type (N4606 27.7.2.3 [istream.unformatted]/39). Implementations can
have 64-bit pos_type (to handle large files) even when they have 32-bit size_t.
Fixes D27543.
llvm-svn: 289110
Given `std::basic_streambuf<CharT>::int_type __c`, `std::basic_string<CharT> str_`,
and having checked `__c != std::basic_streambuf<CharT>::traits_type::eof()` (substituting typedefs
for clarity), the line `str_.push_back(__c);` is safe according to humans, but truncates according
to compilers. `str_.push_back(static_cast<CharT>(__c));` avoids that problem.
Fixes D27538.
llvm-svn: 289105
Replace "int n = str_.size();" with "int n = static_cast<int>(str_.size());".
int is the correct type to use, because we're eventually calling
"base::pbump(n+1);" where base is std::basic_streambuf.
N4606 27.6.3.3.3 [streambuf.put.area]/4 declares: "void pbump(int n);"
llvm-svn: 288751
test/std/depr/depr.c.headers/inttypes_h.pass.cpp
test/std/input.output/file.streams/c.files/cinttypes.pass.cpp
test/std/input.output/iostream.forward/iosfwd.pass.cpp
Add test() to avoid a bunch of void-casts, although we still need a few.
test/std/input.output/iostream.format/quoted.manip/quoted.pass.cpp
skippingws was unused (it's unclear to me whether this was mistakenly copy-pasted from round_trip() below).
test/std/localization/locale.categories/category.collate/locale.collate/types.pass.cpp
test/std/localization/locale.categories/category.ctype/facet.ctype.special/types.pass.cpp
test/std/localization/locale.categories/category.ctype/locale.codecvt/types_char.pass.cpp
test/std/localization/locale.categories/category.ctype/locale.codecvt/types_wchar_t.pass.cpp
test/std/localization/locale.categories/category.ctype/locale.ctype/types.pass.cpp
test/std/localization/locale.categories/facet.numpunct/locale.numpunct/types.pass.cpp
test/std/localization/locales/locale.global.templates/use_facet.pass.cpp
When retrieving facets, the references are unused.
test/std/localization/locale.categories/category.numeric/locale.nm.put/facet.num.put.members/put_long.pass.cpp
test/std/localization/locale.categories/category.numeric/locale.nm.put/facet.num.put.members/put_unsigned_long.pass.cpp
"std::ios_base::iostate err = ios.goodbit;" was completely unused here.
test/std/localization/locale.categories/category.time/locale.time.get/time_base.pass.cpp
test/std/numerics/c.math/ctgmath.pass.cpp
test/std/numerics/rand/rand.device/entropy.pass.cpp
test/std/numerics/rand/rand.device/eval.pass.cpp
test/std/strings/basic.string/string.modifiers/string_copy/copy.pass.cpp
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.char16_t/eof.pass.cpp
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.char32_t/eof.pass.cpp
test/std/thread/futures/futures.promise/dtor.pass.cpp
test/std/thread/futures/futures.task/futures.task.members/dtor.pass.cpp
test/std/thread/thread.condition/thread.condition.condvar/wait_for_pred.pass.cpp
These variables are verifying types but are otherwise unused.
test/std/strings/basic.string/string.capacity/reserve.pass.cpp
old_cap was unused (it's unclear to me whether it was intended to be used).
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.char/eq.pass.cpp
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.char16_t/eq.pass.cpp
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.char16_t/lt.pass.cpp
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.char32_t/eq.pass.cpp
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.char32_t/lt.pass.cpp
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.wchar.t/eq.pass.cpp
test/std/strings/char.traits/char.traits.specializations/char.traits.specializations.wchar.t/lt.pass.cpp
These tests contained unused characters.
llvm-svn: 286847
Skip tests that expect an exception be thrown. Also add
some missing asserts in the original test.
Differential Revision: https://reviews.llvm.org/D26512
llvm-svn: 286823
This replaces every occurrence of _LIBCPP_STD_VER in the tests with
TEST_STD_VER. Additionally, for every affected
file, #include "test_macros.h" is being added explicitly if it wasn't
already there.
https://reviews.llvm.org/D26294
llvm-svn: 286007
Quite a few libcxx tests seem to follow the format:
#if _LIBCPP_STD_VER > X
// Do test.
#else
// Empty test.
#endif
We should instead use the UNSUPPORTED lit directive to exclude the test on
earlier C++ standards. This gives us a more accurate number of test passes
for those standards and avoids unnecessary conflicts with other lit
directives on the same tests.
Reviewers: bcraig, ericwf, mclow.lists
Differential revision: http://reviews.llvm.org/D20730
llvm-svn: 271108
This patch does the following:
* Remove <__config> includes from some container tests.
* Guards uses of std::launch::any in async tests because it's an extension.
* Move "test/std/extensions" to "test/libcxx/extensions"
* Moves various non-standard tests including those in "sequences/vector",
"std/localization" and "utilities/meta".
llvm-svn: 267981
The initial buildbot run found a few missing bits in the initial XFAIL list
for the no-exceptions libc++ variant. These discrepancies are as follows:
[1] Following two tests need XFAILs on the no-exceptions library variant.
My local runs had these two disabled for other reasons (unsupported):
- localization/locales/locale/locale.cons/char_pointer.pass.cpp
- numerics/complex.number/complex.ops/complex_divide_complex.pass.cpp
[2] These three does not need XFAILs, they were failing on my local runs for
other reasons:
- depr/depr.c.headers/uchar_h.pass.cpp
- input.output/iostreams.base/ios/basic.ios.members/copyfmt.pass.cpp
- .../category.collate/locale.collate.byname/transform.pass.cpp
(these are failing on my box for the default build as well)
The current patch fixes both the cases above. Additionally, I've run the
following scan to make sure I've covered all the cases:
> grep ' catch \| try \| throw ' -R . | perl -pe 's|(.*?):.*|\1|' | sort | \
uniq > 1.txt
> grep 'libcpp-no-exceptions' -R . | perl -pe 's|(.*?):.*|\1|' | sort | \
uniq > 2.txt
> diff 1.txt 2.txt
This showed up a few extra interesting cases:
[3] These two tests do not use try/catch/throw statements, but they fail at
runtime. Need to be investigated, I've left the XFAILs in.
- std/thread/futures/futures.shared_future/dtor.pass.cpp
- std/thread/futures/futures.unique_future/dtor.pass.cpp
[4] These tests use a macro named TEST_HAS_NO_EXCEPTIONS to conditionally
exclude try/catch/throw statements when running without exceptions. I'm not
entirely sure why this was needed (AFAIK, we didn't have a no-exceptions
library build before). The macro's defintion is quite similar to that of
_LIBCPP_NO_EXCEPTIONS. I will investigate if this can be reused for my test
fixes or if it should be replaced with _LIBCPP_NO_EXCEPTIONS.
- std/experimental/any/*
Change-Id: I9ad1e0edd78f305406eaa0ab148b1ab693f7e26a
llvm-svn: 252870
Fixes a small omission in libcxx that prevents libcxx being built when
-DLIBCXX_ENABLE_EXCEPTIONS=0 is specified.
This patch adds XFAILS to all those tests that are currently failing
on the new -fno-exceptions library variant. Follow-up patches will
update the tests (progressively) to cope with the new library variant.
Change-Id: I4b801bd8d8e4fe7193df9e55f39f1f393a8ba81a
llvm-svn: 252598
The idea behind Nuxi CloudABI is that it is targeted at (but not limited to)
running networked services in a sandboxed environment. The model behind stdin,
stdout and stderr is strongly focused on interactive tools in a command shell.
CloudABI does not support the notion of stdin and stdout, as 'standard
input/output' does not apply to services. The concept of stderr does makes
sense though, as services do need some mechanism to log error messages in a
uniform way.
This patch extends libc++ in such a way that std::cin and std::cout and the
associated <cstdio>/<cwchar> functions can be disabled through the flags
_LIBCPP_HAS_NO_STDIN and _LIBCPP_HAS_NO_STDOUT, respectively. At the same time
it attempts to clean up src/iostream.cpp a bit. Instead of using a single array
of mbstate_t objects and hardcoding the array indices, it creates separate
objects that declared next to the iostream objects and their buffers. The code
is also restructured by interleaving the construction and setup of c* and wc*
objects. That way it is more obvious that this is done identically.
The c* and wc* objects already have separate unit tests. Make use of this fact
by adding XFAILs in case libcpp-has-no-std* is set. That way the tests work in
both directions. If stdin or stdout is disabled, these tests will therefore
test for the absence of c* and wc*.
Differential Revision: http://reviews.llvm.org/D8340
llvm-svn: 233275
In one of the ostream tests we attempt to validate whether the output of
%p is correct. This is actually outside the scope of libc++, for the
%reason that the format of %p is implementation defined. Change the test
%to validate that the output of %p is non-empty and is different when
%given two unequal addresses.
Differential Revision: http://reviews.llvm.org/D8354
Reviewed by: marshall
llvm-svn: 232390
The rest of the test uses the #defines for the locale names properly. In
this single spot we do hardcode the string. This causes this test to
fail on CloudABI, where this locale is called en_US.UTF-8@UTC.
llvm-svn: 232365
Systems like FreeBSD's Capsicum and Nuxi CloudABI apply the concept of
capability-based security on the way processes can interact with the
filesystem API. It is no longer possible to interact with the VFS
through calls like open(), unlink(), rename(), etc. Instead, processes
are only allowed to interact with files and directories to which they
have been granted access. The *at() functions can be used for this
purpose.
This change adds a new config switch called
_LIBCPP_HAS_NO_GLOBAL_FILESYSTEM_NAMESPACE. If set, all functionality
that requires the global filesystem namespace will be disabled. More
concretely:
- fstream's open() function will be removed.
- cstdio will no longer pull in fopen(), rename(), etc.
- The test suite's get_temp_file_name() will be removed. This will cause
all tests that use the global filesystem namespace to break, but will
at least make all the other tests run (as get_temp_file_name will not
build anyway).
It is important to mention that this change will make fstream rather
useless on those systems for now. Still, I'd rather not have fstream
disabled entirely, as it is of course possible to come up with an
extension for fstream that would allow access to local filesystem
namespaces (e.g., by adding an openat() member function).
Differential revision: http://reviews.llvm.org/D8194
Reviewed by: jroelofs (thanks!)
llvm-svn: 232049