This patch adds both a ScopAnalysisManager and a ScopPassManager.
The ScopAnalysisManager is itself a Function-Analysis, and manages
analyses on Scops. The ScopPassManager takes care of building Scop pass
pipelines.
This patch is marked WIP because I've left two FIXMEs which I need to
think about some more. Both of these deal with invalidation:
Deferred invalidation is currently not implemented. Deferred
invalidation deals with analyses which cache references to other
analysis results. If these results are invalidated, invalidation needs
to be propagated into the caching analyses.
The ScopPassManager as implemented assumes that ScopPasses do not affect
other Scops in any way. There has been some discussion about this on
other patch threads, however it makes sense to reiterate this for this
specific patch.
I'm uploading this patch even though it's incomplete to encourage
discussion and give you an impression of how this is going to work.
Differential Revision: https://reviews.llvm.org/D33192
llvm-svn: 303062
Summary:
The custom `polly-check-format` target runs clang-format over all source files in the directory tree excluding lib/External. `isl_config.h` is a header file that is generated by CMake in the build directory, and it's not correctly formatted (which I also wouldn't consider necessary, as it is a generated file).
If the build directory is actually inside the Polly source directory (which it might be if you're building Polly out-of-tree), that check always fails. Hence this patch excludes this file from the check-format target.
Reviewers: Meinersbur, grosser
Reviewed By: grosser
Subscribers: mgorny, llvm-commits, pollydev
Tags: #polly
Differential Revision: https://reviews.llvm.org/D33192
llvm-svn: 303060
The Timer destructor would grab a global mutex in order to update
execution time. Add a class to define a category once, statically; the
class adds itself to an atomic singly linked list, and thus subsequent
updates only need to use an atomic rather than grab a lock and perform a
hashtable lookup.
Differential Revision: https://reviews.llvm.org/D32823
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 303058
Doing this means that if an LEApcrel is used in two places we will rematerialize
instead of generating two MOVs. This is particularly useful for printfs using
the same format string, where we want to generate an address into a register
that's going to get corrupted by the call.
Differential Revision: https://reviews.llvm.org/D32858
llvm-svn: 303054
Doing this lets us hoist it out of loops, and I've also marked it as
rematerializable the same as the thumb1 and thumb2 counterparts.
It looks like it being marked as such was just a mistake, as the commit that
made that change only mentions LEApcrelJT and in thumb1 and thumb2 only the
LEApcrelJT instructions were marked as having side-effects, so it looks like
the intent was to only mark LEApcrelJT as having side-effects but LEApcrel was
accidentally marked as such also.
Differential Revision: https://reviews.llvm.org/D32857
llvm-svn: 303053
I am working on a speedup of building .gdb_index in LLD and
noticed that relocations that are proccessed in DWARFContextInMemory often uses
the same symbol in a row. This patch introduces caching to reduce the relocations
proccessing time.
For benchmark,
I took debug LLC binary objects configured with -ggnu-pubnames and linked it using LLD.
Link time without --gdb-index is about 4,45s.
Link time with --gdb-index: a) Without patch: 19,16s b) With patch: 15,52s
That means time spent on --gdb-index in this configuration is
19,16s - 4,45s = 14,71s (without patch) vs 15,52s - 4,45s = 11,07s (with patch).
Differential revision: https://reviews.llvm.org/D31136
llvm-svn: 303051
Currently, when masked load, store, gather or scatter intrinsics are used, we check in CodeGenPrepare pass if the subtarget support these intrinsics, if not we replace them with scalar code - this is a functional transformation not an optimization (not optional).
CodeGenPrepare pass does not run when the optimization level is set to CodeGenOpt::None (-O0).
Functional transformation should run with all optimization levels, so here I created a new pass which runs on all optimization levels and does no more than this transformation.
Differential Revision: https://reviews.llvm.org/D32487
llvm-svn: 303050
myFunction(param1, param2,);
For symmetry with other parenthesized lists ([...], {...}), clang-format should
wrap parenthesized lists one-per-line if they contain a trailing comma:
myFunction(
param1,
param2,
);
This is particularly useful in function declarations or calls with many
arguments, e.g. commonly in constructors.
Differential Revision: https://reviews.llvm.org/D33023
llvm-svn: 303049
NFC followup to D33147, this explicitly sets all the arguments (instead of relying on the defaults) to SelectionDAG::getMemIntrinsicNode to help identify -verify-machineinstrs issues.
llvm-svn: 303047
Summary:
We were asserting in RegisterBankInfo if RBI.copyCost() returns
UINT_MAX. This is OK for RegBankSelect::Mode::Fast since we only
try one instruction mapping and can't recover from this, but for
RegBankSelect::Mode::Greedy we will be considering multiple
instruction mappings, so we can recover if we see a UNIT_MAX copy
cost.
The copy cost for one pair of register banks in the AMDGPU backend
will be UNIT_MAX, so this patch will prevent AMDGPU tests from
breaking.
Reviewers: ab, qcolombet, t.p.northover, dsanders
Reviewed By: qcolombet
Subscribers: tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D33144
llvm-svn: 303043
Summary:
This was broken by r302499. Configuring with -DLLVM_BUILD_DOCS=ON would
cause the docs-llvm-man target not to be created.
Reviewers: anemet, beanz
Reviewed By: anemet
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33146
llvm-svn: 303042
We were previously silently emitting bogus data in release mode,
making it very hard to diagnose the error, or crashing with an
assert in debug mode. A proper diagnostic is now always emitted
when the value to be emitted is out of range.
llvm-svn: 303041
- This breaks the previous assumption that Fortran Arrays are `GlobalValue`.
- The names of functions were getting unwieldy. So, I renamed the
Fortran related functions.
Differential Revision: https://reviews.llvm.org/D33075
llvm-svn: 303040
- auto + decltype + template use was not inferrable in
`Transform/Simplify.cpp accessesInOrder`.
- changed code to explicitly construct required vector instead of using
higher order iterator helpers.
- Failing compiler spec:
Apple LLVM version 7.3.0 (clang-703.0.31)
Target: x86_64-apple-darwin15.6.0
llvm-svn: 303039
Summary:
`getIdentifierInfo()` includes all keywords, whereas non-null assertion
operators should only be recognized after non-keywords or pseudo keywords.
Ideally this should list all tokens that clang-format recognizes as a keyword,
but that are pseudo or no keywords in JS. For the time being, just recognize
the specific bits users ran into (`namespace` in this case).
Reviewers: djasper
Subscribers: klimek
Differential Revision: https://reviews.llvm.org/D33182
llvm-svn: 303038
module immediately
Also revert dependent r302969. This is leading to crashes.
Will provide more details reproduction instructions to Richard.
llvm-svn: 303037
Separated very long brief sections into two sections.
I got an OK from Eric Christopher to commit doxygen comments without prior code
review upstream.
llvm-svn: 303031
Summary:
Merge overflow computation for signed add,
appearing both in InstCombine and ValueTracking.
As part of the merge,
cleanup the interface for overflow checks in InstCombine.
Patch by Yoav Ben-Shalom.
Reviewers: craig.topper, majnemer
Reviewed By: craig.topper
Subscribers: takuto.ikuta, llvm-commits
Differential Revision: https://reviews.llvm.org/D32946
llvm-svn: 303029
https://bugs.llvm.org/show_bug.cgi?id=32933
Turns out clang wasn't really handling vla's (*) in C++11's for-range entirely correctly.
For e.g. This would lead to generation of buggy IR:
void foo(int b) {
int vla[b];
b = -1; // This store would affect the '__end = vla + b'
for (int &c : vla)
c = 0;
}
Additionally, code-gen would get confused when VLA's were reference-captured by lambdas, and then used in a for-range, which would result in an attempt to generate IR for '__end = vla + b' within the lambda's body - without any capture of 'b' - hence the assertion.
This patch modifies clang, so that for VLA's it translates the end pointer approximately into:
__end = __begin + sizeof(vla)/sizeof(vla->getElementType())
As opposed to the __end = __begin + b;
I considered passing a magic value into codegen - or having codegen special case the '__end' variable when it referred to a variably-modified type, but I decided against that approach, because it smelled like I would be increasing a complicated form of coupling, that I think would be even harder to maintain than the above approach (which can easily be optimized (-O1) to refer to the run-time bound that was calculated upon array's creation or copied into the lambda's closure object).
(*) why oh why gcc would you enable this by default?! ;)
llvm-svn: 303026
Replace SelectionDAG::getNode(ISD::SELECT, ...)
and SelectionDAG::getNode(ISD::VSELECT, ...)
with SelectionDAG::getSelect(...)
Saves a few lines of code and in some cases saves the need to explicitly
check the type of the desired node.
llvm-svn: 303024
I noticed the 512-bit lzcnts don't use the X86 specific lookup table code and instead use the EXPAND case in LegalizeDAG. I was toying around with fixing this and noticed it would require compare instructions that generate i1 masks and then converting from mask to vector. Then I noticed that we don't test which compares are used with avx512vl and no avx512cd.
llvm-svn: 303020
Remove an unneeded prefix from the 32-bit command line. Make all the 64-bit triples match. Replace ALL with X64 and remove it from the 32-bit test.
llvm-svn: 303019