We used to have a flag to enable module maps, and two more flags to enable
implicit module maps. This is all redundant; we don't need any flag for
enabling module maps in the abstract, and we don't usually have -fno- flags for
-cc1. We now have just a single flag, -fimplicit-module-maps, that enables
implicitly searching the file system for module map files and loading them.
The driver interface is unchanged for now. We should probably rename
-fmodule-maps to -fimplicit-module-maps at some point.
llvm-svn: 239789
Removes some old code that allowed a module to be loaded from a pcm file
even if the module.map could not be found. Also update a number of
tests that relied on the old behavior.
llvm-svn: 199852
VerifyDiagnosticConsumer previously would not check that the diagnostic and
its matching directive referenced the same source file. Common practice was
to create directives that referenced other files but only by line number,
and this led to problems such as when the file containing the directive
didn't have enough lines to match the location of the diagnostic in the
other file, leading to bizarre file formatting and other oddities.
This patch causes VerifyDiagnosticConsumer to match source files as well as
line numbers. Therefore, a new syntax is made available for directives, for
example:
// expected-error@file:line {{diagnostic message}}
This extends the @line feature where "file" is the file where the diagnostic
is generated. The @line syntax is still available and uses the current file
for the diagnostic. "file" can be specified either as a relative or absolute
path - although the latter has less usefulness, I think! The #include search
paths will be used to locate the file and if it is not found an error will be
generated.
The new check is not optional: if the directive is in a different file to the
diagnostic, the file must be specified. Therefore, a number of test-cases
have been updated with regard to this.
This closes out PR15613.
llvm-svn: 179677
The old behavior was to re-scan any files (like modules) where we may have
directives but won't actually be parsing during the -verify invocation.
Now, we keep the old behavior in Debug builds as a sanity check (though
modules are a known entity), and expect all legitimate directives to come
from comments seen by the preprocessor.
This also affects the ARC migration tool, which captures diagnostics in
order to filter some out. This change adds an explicit cleanup to
CaptureDiagnosticsConsumer in order to let its sub-consumer handle the
real end of diagnostics.
This was originally split into four patches, but the tests do not run
cleanly without all four, so I've combined them into one commit.
Patches by Andy Gibbs, with slight modifications from me.
llvm-svn: 161650
modules. This leaves us without an explicit syntax for importing
modules in C/C++, because such a syntax needs to be discussed
first. In Objective-C/Objective-C++, the @import syntax is used to
import modules.
Note that, under -fmodules, C/C++ programs can import modules via the
#include mechanism when a module map is in place for that header. This
allows us to work with modules in C/C++ without committing to a syntax.
llvm-svn: 147467
target triple to separate modules built under different
conditions. The hash is used to create a subdirectory in the module
cache path where other invocations of the compiler (with the same
version, language options, etc.) can find the precompiled modules.
llvm-svn: 139662
where the compiler will look for module files. Eliminates the
egregious hack where we looked into the header search paths for
modules.
llvm-svn: 139538
existing practice with Python extension modules. Not that Python
extension modules should be using a double-underscored identifier
anyway, but...
llvm-svn: 138870
__import__ within the preprocessor, since the prior one foolishly
assumed that Preprocessor::Lex() was re-entrant. We now handle
__import__ at the top level (only), after macro expansion. This should
fix the buildbot failures.
llvm-svn: 138704
loads the named module. The syntax itself is intentionally hideous and
will be replaced at some later point with something more
palatable. For now, we're focusing on the semantics:
- Module imports are handled first by the preprocessor (to get macro
definitions) and then the same tokens are also handled by the parser
(to get declarations). If both happen (as in normal compilation),
the second one is redundant, because we currently have no way to
hide macros or declarations when loading a module. Chris gets credit
for this mad-but-workable scheme.
- The Preprocessor now holds on to a reference to a module loader,
which is responsible for loading named modules. CompilerInstance is
the only important module loader: it now knows how to create and
wire up an AST reader on demand to actually perform the module load.
- We search for modules in the include path, using the module name
with the suffix ".pcm" (precompiled module) for the file name. This
is a temporary hack; we hope to improve the situation in the
future.
llvm-svn: 138679
from the given source. -emit-module behaves similarly to -emit-pch,
except that Sema is somewhat more strict about the contents of
-emit-module. In the future, there are likely to be more interesting
differences.
llvm-svn: 138595
which supports both pre-order and post-order traversal via a visitor
mechanism. Use this depth-first search with a post-order traversal to
give predictable ordering semantics when walking all of the lexical
declarations in the translation unit.
Eventually, module imports will occur in the source code rather than
at the beginning, and we'll have to revisit this walk.
llvm-svn: 138490
module DAG-based lookup scheme. This required some reshuffling, so
that each module stores its own mapping from DeclContexts to their
lexical and visible sets for those DeclContexts (rather than one big
"chain").
Overall, this allows simple qualified name lookup into the translation
unit to gather results from multiple modules, with the lookup results
in module B shadowing the lookup results in module A when B imports A.
Walking all of the lexical declarations in a module DAG is still a
mess; we'll end up walking the loaded module list backwards, which
works fine for chained PCH but doesn't make sense in a DAG. I'll
tackle this issue as a separate commit.
llvm-svn: 138463