expressions, to improve source-location information, clarify the
actual receiver of the message, and pave the way for proper C++
support. The ObjCMessageExpr node represents four different kinds of
message sends in a single AST node:
1) Send to a object instance described by an expression (e.g., [x method:5])
2) Send to a class described by the class name (e.g., [NSString method:5])
3) Send to a superclass class (e.g, [super method:5] in class method)
4) Send to a superclass instance (e.g., [super method:5] in instance method)
Previously these four cases where tangled together. Now, they have
more distinct representations. Specific changes:
1) Unchanged; the object instance is represented by an Expr*.
2) Previously stored the ObjCInterfaceDecl* referring to the class
receiving the message. Now stores a TypeSourceInfo* so that we know
how the class was spelled. This both maintains typedef information
and opens the door for more complicated C++ types (e.g., dependent
types). There was an alternative, unused representation of these
sends by naming the class via an IdentifierInfo *. In practice, we
either had an ObjCInterfaceDecl *, from which we would get the
IdentifierInfo *, or we fell into the case below...
3) Previously represented by a class message whose IdentifierInfo *
referred to "super". Sema and CodeGen would use isStr("super") to
determine if they had a send to super. Now represented as a
"class super" send, where we have both the location of the "super"
keyword and the ObjCInterfaceDecl* of the superclass we're
targetting (statically).
4) Previously represented by an instance message whose receiver is a
an ObjCSuperExpr, which Sema and CodeGen would check for via
isa<ObjCSuperExpr>(). Now represented as an "instance super" send,
where we have both the location of the "super" keyword and the
ObjCInterfaceDecl* of the superclass we're targetting
(statically). Note that ObjCSuperExpr only has one remaining use in
the AST, which is for "super.prop" references.
The new representation of ObjCMessageExpr is 2 pointers smaller than
the old one, since it combines more storage. It also eliminates a leak
when we loaded message-send expressions from a precompiled header. The
representation also feels much cleaner to me; comments welcome!
This patch attempts to maintain the same semantics we previously had
with Objective-C message sends. In several places, there are massive
changes that boil down to simply replacing a nested-if structure such
as:
if (message has a receiver expression) {
// instance message
if (isa<ObjCSuperExpr>(...)) {
// send to super
} else {
// send to an object
}
} else {
// class message
if (name->isStr("super")) {
// class send to super
} else {
// send to class
}
}
with a switch
switch (E->getReceiverKind()) {
case ObjCMessageExpr::SuperInstance: ...
case ObjCMessageExpr::Instance: ...
case ObjCMessageExpr::SuperClass: ...
case ObjCMessageExpr::Class:...
}
There are quite a few places (particularly in the checkers) where
send-to-super is effectively ignored. I've placed FIXMEs in most of
them, and attempted to address send-to-super in a reasonable way. This
could use some review.
llvm-svn: 101972
we will print with each error that occurs during template
instantiation. When the backtrace is longer than that, we will print
N/2 of the innermost backtrace entries and N/2 of the outermost
backtrace entries, then skip the middle entries with a note such as:
note: suppressed 2 template instantiation contexts; use
-ftemplate-backtrace-limit=N to change the number of template
instantiation entries shown
This should eliminate some excessively long backtraces that aren't
providing any value.
llvm-svn: 101882
of buildbots with:
error: 'error' diagnostics expected but not seen:
Line 9: too few elements in vector initialization (expected 8 elements, have 2)
1 warning and 1 error generated.
llvm-svn: 101864
function declaration, since it may end up being changed (e.g.,
"extern" can become "static" if a prior declaration was static). Patch
by Enea Zaffanella and Paolo Bolzoni.
llvm-svn: 101826
look from an Objective-C class or category to its implementation, to
pick up synthesized ivars. Fixes a problem reported by David
Chisnall.
llvm-svn: 101792
a qualified name. We weren't checking for an empty
nested-name-specifier when dealing with friend class templates
(although we were checking in the other places where we deal with this
paragraph). Fixes a Boost.Serialization showstopper.
llvm-svn: 101724
different kinds (aka garbage). This happens if we're comparing a standard
conversion sequence to an ambiguous one which have the same KindRank.
Found by valgrind.
llvm-svn: 101717
resolution ([over.ics.ref]), we take some shortcuts required by the
standard that effectively permit binding of a const volatile reference
to an rvalue. We have to treat lightly here to avoid infinite
recursion.
Fixes PR6177.
llvm-svn: 101712
reference binding to an rvalue of reference-compatible type, check
parameters after the first for complete parameter types and build any
required default function arguments. We're effectively simulating the
type-checking for a call without building the call itself.
llvm-svn: 101705
reference-compatible type, the implementation is permitted to make a
copy of the rvalue (or many such copies, even). However, even though
we don't make that copy, we are required to check for the presence of
a suitable copy constructor. With this change, we do.
Note that in C++0x we are not allowed to make these copies, so we test
both dialects separately.
Also note the FIXME in one of the C++03 tests, where we are not
instantiating default function arguments for the copy constructor we
pick (but do not call). The fix is obvious; eliminating the infinite
recursion it causes is not. Will address that next.
llvm-svn: 101704
temporary object. This is blindingly obvious from reading C++
[over.match.ctor]p1, but somehow I'd missed it and it took DR152 to
educate me. Adjust one test that was relying on this non-standard
behavior.
llvm-svn: 101688
resolution. There are two sources of problems involving user-defined
conversions that this change eliminates, along with providing simpler
interfaces for checking implicit conversions:
- It eliminates a case of infinite recursion found in Boost.
- It eliminates the search for the constructor needed to copy a temporary
generated by an implicit conversion from overload
resolution. Overload resolution assumes that, if it gets a value
of the parameter's class type (or a derived class thereof), there
is a way to copy if... even if there isn't. We now model this
properly.
llvm-svn: 101680
checking into a single function and use that throughout. Remove some
now unnecessary diagnostics and update tests with now more accurate
diagnostics.
llvm-svn: 101610
TryStaticImplicitCast (for references, class types, and everything
else, respectively) into a single invocation of
InitializationSequence.
One of the paths (for class types) was the only client of
Sema::TryInitializationByConstructor, which I have eliminated. This
also simplified the interface for much of the cast-checking logic,
eliminating yet more code.
I've kept the representation of C++ functional casts with <> 1
arguments the same, despite the fact that I hate it. That fix will
come soon. To satisfy my paranoia, I've bootstrapped + tested Clang
with these changes.
llvm-svn: 101549
functional casts over to InitializationSequence, eliminating a caller
of Sema::TryImplicitConversion. We also get access and ambiguity
checking "for free".
More cleanups to come in this routine.
llvm-svn: 101526