Commit Graph

6328 Commits

Author SHA1 Message Date
David Majnemer 7679300d93 EarlyCSE: It isn't safe to CSE across synchronization boundaries
This fixes PR22514.

llvm-svn: 228760
2015-02-10 23:09:43 +00:00
Philip Reames 7e7dc3e9df Adjust how we avoid poll insertion inside the poll function (NFC)
I realized that my early fix for this was overly complicated.  Rather than scatter checks around in a bunch of places, just exit early when we visit the poll function itself.

Thinking about it a bit, the whole inlining mechanism used with gc.safepoint_poll could probably be cleaned up a bit.  Originally, poll insertion was fused with gc relocation rewriting.  It might be worth going back to see if we can simplify the chain of events now that these two are seperated.  As one thought, maybe it makes sense to rewrite calls inside the helper function before inlining it to the many callers.  This would require us to visit the poll function before any other functions though..

llvm-svn: 228634
2015-02-10 00:04:53 +00:00
Adrian Prantl 34e7590e0d Debug info: When updating debug info during SROA, do not emit debug info
for any padding introduced by SROA. In particular, do not emit debug info
for an alloca that represents only the padding introduced by a previous
iteration.

Fixes PR22495.

llvm-svn: 228632
2015-02-09 23:57:22 +00:00
Adrian Prantl 27bd01f71c Debug info: Use DW_OP_bit_piece instead of DW_OP_piece in the
intermediate representation. This
- increases consistency by using the same granularity everywhere
- allows for pieces < 1 byte
- DW_OP_piece didn't actually allow storing an offset.

Part of PR22495.

llvm-svn: 228631
2015-02-09 23:57:15 +00:00
Ramkumar Ramachandra 3edf74fe29 [Statepoint] Improve two asserts, fix some style (NFC)
Summary:
It's important that our users immediately know what gc.safepoint_poll
is. Also fix the style of the declaration of CreateGCStatepoint, in
preparation for another change that will wrap it.

Reviewers: reames

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7517

llvm-svn: 228626
2015-02-09 23:02:10 +00:00
Ramkumar Ramachandra 2e4b9e0a37 PlaceSafepoints: modernize gc.result.* -> gc.result
Differential Revision: http://reviews.llvm.org/D7516

llvm-svn: 228625
2015-02-09 23:00:40 +00:00
Philip Reames d4a912fefd Update file comment to clarify points highlighted in review (NFC)
llvm-svn: 228621
2015-02-09 22:44:03 +00:00
Philip Reames a29de87ea4 Use range for loops in PlaceSafepoints (NFC)
llvm-svn: 228620
2015-02-09 22:26:11 +00:00
Philip Reames b1ed02f728 Add basic tests for PlaceSafepoints
This is just adding really simple tests which should have been part of the original submission.  When doing so, I discovered that I'd mistakenly removed required pieces when preparing the patch for upstream submission.  I fixed two such bugs in this submission.

llvm-svn: 228610
2015-02-09 21:48:05 +00:00
Benjamin Kramer f094d77de8 LoopIdiom: Use utility functions.
The only difference between deleteIfDeadInstruction and
RecursivelyDeleteTriviallyDeadInstructions is that the former also
manually invalidates SCEV. That's unnecessary because SCEV automatically
gets informed when an instruction is deleted via a ValueHandle. NFC.

llvm-svn: 228508
2015-02-07 21:37:08 +00:00
Bjorn Steinbrink 71bf3b800a Properly update AA metadata when performing call slot optimization
Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7482

llvm-svn: 228500
2015-02-07 17:54:36 +00:00
Michael Zolotukhin 7af83c1f39 Use estimated number of optimized insns in unroll-threshold computation.
If complete-unroll could help us to optimize away N% of instructions, we
might want to do this even if the final size would exceed loop-unroll
threshold. However, we don't want to unroll huge loop, and we are add
AbsoluteThreshold to avoid that - this threshold will never be crossed,
even if we expect to optimize 99% instructions after that.

llvm-svn: 228434
2015-02-06 20:20:40 +00:00
Michael Zolotukhin 4e8598eee3 [InstSimplify] Add SimplifyFPBinOp function.
It is a variation of SimplifyBinOp, but it takes into account
FastMathFlags.

It is needed in inliner and loop-unroller to accurately predict the
transformation's outcome (previously we dropped the flags and were too
conservative in some cases).

Example:
float foo(float *a, float b) {
 float r;
 if (a[1] * b)
   r = /* a lot of expensive computations */;
 else
   r = 1;
 return r;
}
float boo(float *a) {
 return foo(a, 0.0);
}

Without this patch, we don't inline 'foo' into 'boo'.

llvm-svn: 228432
2015-02-06 20:02:51 +00:00
Benjamin Kramer 970eac40bf Make helper functions/classes/globals static. NFC.
llvm-svn: 228410
2015-02-06 17:51:54 +00:00
Benjamin Kramer 39f76acb5c IRCE: Demote template to ArrayRef and SmallVector to array.
NFC.

llvm-svn: 228398
2015-02-06 14:43:49 +00:00
Aaron Ballman 94d4d33a38 Removing an unused variable warning I accidentally introduced with my last warning fix; NFC.
llvm-svn: 228295
2015-02-05 13:52:42 +00:00
Aaron Ballman 1b072b340b Silencing an MSVC warning about a switch statement with no cases; NFC.
llvm-svn: 228294
2015-02-05 13:40:04 +00:00
Michael Zolotukhin a9aadd2903 Implement new heuristic for complete loop unrolling.
Complete loop unrolling can make some loads constant, thus enabling a
lot of other optimizations. To catch such cases, we look for loads that
might become constants and estimate number of instructions that would be
simplified or become dead after substitution.

Example:
Suppose we have:
int a[] = {0, 1, 0};
v = 0;
for (i = 0; i < 3; i ++)
  v += b[i]*a[i];

If we completely unroll the loop, we would get:
v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]

Which then will be simplified to:
v = b[0]* 0 + b[1]* 1 + b[2]* 0

And finally:
v = b[1]

llvm-svn: 228265
2015-02-05 02:34:00 +00:00
Tom Stellard 080209d573 StructurizeCFG: Remove obsolete fix for loop backedge detection
This is no longer needed now that we are using a reverse post-order
traversal.

llvm-svn: 228187
2015-02-04 20:49:47 +00:00
Tom Stellard 071ec90b68 StructurizeCFG: Use a reverse post-order traversal
We were previously doing a post-order traversal and operating on the
list in reverse, however this would occasionaly cause backedges for
loops to be visited before some of the other blocks in the loop.

We know use a reverse post-order traversal, which avoids this issue.

The reverse post-order traversal is not completely ideal, so we need
to manually fixup the list to ensure that inner loop backedges are
visited before outer loop backedges.

llvm-svn: 228186
2015-02-04 20:49:44 +00:00
Aaron Ballman 34c325e749 Fixing a -Wsign-compare warning; NFC
llvm-svn: 228142
2015-02-04 14:01:08 +00:00
Philip Reames 72634d6af0 Fix a warning in non-asserts builds
llvm-svn: 228114
2015-02-04 05:11:20 +00:00
Philip Reames 5a9685dba6 Clang format of a file introduced in 228090 (NFC)
llvm-svn: 228091
2015-02-04 00:39:57 +00:00
Philip Reames 47cc673e1f Add a pass for inserting safepoints into (nearly) arbitrary IR
This pass is responsible for figuring out where to place call safepoints and safepoint polls. It doesn't actually make the relocations explicit; that's the job of the RewriteStatepointsForGC pass (http://reviews.llvm.org/D6975).

Note that this code is not yet finalized.  Its moving in tree for incremental development, but further cleanup is needed and will happen over the next few days.  It is not yet part of the standard pass order.  

Planned changes in the near future:
 - I plan on restructuring the statepoint rewrite to use the functions add to the IRBuilder a while back. 
 - In the current pass, the function "gc.safepoint_poll" is treated specially but is not an intrinsic. I plan to make identifying the poll function a property of the GCStrategy at some point in the near future.
 - As follow on patches, I will be separating a collection of test cases we have out of tree and submitting them upstream. 
 - It's not explicit in the code, but these two patches are introducing a new state for a statepoint which looks a lot like a patchpoint. There's no a transient form which doesn't yet have the relocations explicitly represented, but does prevent reordering of memory operations. Once this is in, I need to update actually make this explicit by reserving the 'unused' argument of the statepoint as a flag, updating the docs, and making the code explicitly check for such a thing. This wasn't really planned, but once I split the two passes - which was done for other reasons - the intermediate state fell out. Just reminds us once again that we need to merge statepoints and patchpoints at some point in the not that distant future.

Future directions planned:
 - Identifying more cases where a backedge safepoint isn't required to ensure timely execution of a safepoint poll.
 - Tweaking the insertion process to generate easier to optimize IR. (For example, investigating making SplitBackedge) the default.
 - Adding opt-in flags for a GCStrategy to use this pass. Once done, add this pass to the actual pass ordering.

Differential Revision: http://reviews.llvm.org/D6981

llvm-svn: 228090
2015-02-04 00:37:33 +00:00
Daniel Berlin 487aed0d77 Allow PRE to insert no-cost phi nodes
llvm-svn: 228024
2015-02-03 20:37:08 +00:00
Jingyue Wu d7966ff3b9 Add straight-line strength reduction to LLVM
Summary:
Straight-line strength reduction (SLSR) is implemented in GCC but not yet in
LLVM. It has proven to effectively simplify statements derived from an unrolled
loop, and can potentially benefit many other cases too. For example,

LLVM unrolls

  #pragma unroll
  foo (int i = 0; i < 3; ++i) {
    sum += foo((b + i) * s);
  }

into

  sum += foo(b * s);
  sum += foo((b + 1) * s);
  sum += foo((b + 2) * s);

However, no optimizations yet reduce the internal redundancy of the three
expressions:

  b * s
  (b + 1) * s
  (b + 2) * s

With SLSR, LLVM can optimize these three expressions into:

  t1 = b * s
  t2 = t1 + s
  t3 = t2 + s

This commit is only an initial step towards implementing a series of such
optimizations. I will implement more (see TODO in the file commentary) in the
near future. This optimization is enabled for the NVPTX backend for now.
However, I am more than happy to push it to the standard optimization pipeline
after more thorough performance tests.

Test Plan: test/StraightLineStrengthReduce/slsr.ll

Reviewers: eliben, HaoLiu, meheff, hfinkel, jholewinski, atrick

Reviewed By: jholewinski, atrick

Subscribers: karthikthecool, jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D7310

llvm-svn: 228016
2015-02-03 19:37:06 +00:00
Jingyue Wu 49a766e468 Resurrect the assertion removed by r227717
Summary: MSVC can compile "LoopID->getOperand(0) == LoopID" when LoopID is MDNode*.

Test Plan: no regression

Reviewers: mkuper

Subscribers: jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D7327

llvm-svn: 227853
2015-02-02 20:41:11 +00:00
Chandler Carruth 21fc195c13 [multiversion] Kill FunctionTargetTransformInfo, TTI itself is now
per-function and supports the exact desired interface.

llvm-svn: 227743
2015-02-01 14:37:03 +00:00
Benjamin Kramer 6ab86b1bb6 EarlyCSE: Replace custom hash mixing with Hashing.h
Brings it in line with the other hashes in EarlyCSE.

llvm-svn: 227733
2015-02-01 12:30:59 +00:00
Chandler Carruth fdb9c573f7 [multiversion] Thread a function argument through all the callers of the
getTTI method used to get an actual TTI object.

No functionality changed. This just threads the argument and ensures
code like the inliner can correctly look up the callee's TTI rather than
using a fixed one.

The next change will use this to implement per-function subtarget usage
by TTI. The changes after that should eliminate the need for FTTI as that
will have become the default.

llvm-svn: 227730
2015-02-01 12:01:35 +00:00
Chandler Carruth fdffd87d68 [PM] Port SimplifyCFG to the new pass manager.
This should be sufficient to replace the initial (minor) function pass
pipeline in Clang with the new pass manager. I'll probably add an (off
by default) flag to do that just to ensure we can get extra testing.

llvm-svn: 227726
2015-02-01 11:34:21 +00:00
Chandler Carruth e8c686aa86 [PM] Port EarlyCSE to the new pass manager.
I've added RUN lines both to the basic test for EarlyCSE and the
target-specific test, as this serves as a nice test that the TTI layer
in the new pass manager is in fact working well.

llvm-svn: 227725
2015-02-01 10:51:23 +00:00
Jingyue Wu 6c26bb63fe [SeparateConstOffsetFromGEP] skip optnone functions
llvm-svn: 227705
2015-02-01 02:34:41 +00:00
Jingyue Wu 6e091c8eab [SeparateConstOffsetFromGEP] set PreservesCFG flag
SeparateConstOffsetFromGEP does not change the shape of the control flow graph.

llvm-svn: 227704
2015-02-01 02:33:02 +00:00
Jingyue Wu 0220df0dfd [NVPTX] Emit .pragma "nounroll" for loops marked with nounroll
Summary:
CUDA driver can unroll loops when jit-compiling PTX. To prevent CUDA
driver from unrolling a loop marked with llvm.loop.unroll.disable is not
unrolled by CUDA driver, we need to emit .pragma "nounroll" at the
header of that loop.

This patch also extracts getting unroll metadata from loop ID metadata
into a shared helper function.

Test Plan: test/CodeGen/NVPTX/nounroll.ll

Reviewers: eliben, meheff, jholewinski

Reviewed By: jholewinski

Subscribers: jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D7041

llvm-svn: 227703
2015-02-01 02:27:45 +00:00
Adrian Prantl 152ac396db Fix PR22393. When recursively replacing an aggregate with a smaller
aggregate or scalar, the debug info needs to refer to the absolute offset
(relative to the entire variable) instead of storing the offset inside
the smaller aggregate.

llvm-svn: 227702
2015-02-01 00:58:04 +00:00
Chandler Carruth 705b185f90 [PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.

The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.

I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.

There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.

The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.

Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.

The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]

Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:

1) Improving the TargetMachine interface by having it directly return
   a TTI object. Because we have a non-pass object with value semantics
   and an internal type erasure mechanism, we can narrow the interface
   of the TargetMachine to *just* do what we need: build and return
   a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
   This will include splitting off a minimal form of it which is
   sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
   target machine for each function. This may actually be done as part
   of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
   easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
   easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
   just a bit messy and exacerbating the complexity of implementing
   the TTI in each target.

Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.

Differential Revision: http://reviews.llvm.org/D7293

llvm-svn: 227669
2015-01-31 03:43:40 +00:00
James Molloy 64419d414b [LoopReroll] Alter the data structures used during reroll validation.
The validation algorithm used an incremental approach, building each
iteration's data structures temporarily, validating them, then
adding them to a global set.

This does not scale well to having multiple sets of Root nodes, as the
set of instructions used in each iteration is the union over all
the root nodes. Therefore, refactor the logic to create a single, simple
container to which later logic then refers. This makes it simpler
control-flow wise to make the creation of the container more complex with
the addition of multiple root sets.

llvm-svn: 227499
2015-01-29 21:52:03 +00:00
Sanjay Patel 4f07a56958 [GVN] don't propagate equality comparisons of FP zero (PR22376)
In http://reviews.llvm.org/D6911, we allowed GVN to propagate FP equalities
to allow some simple value range optimizations. But that introduced a bug
when comparing to -0.0 or 0.0: these compare equal even though they are not
bitwise identical.

This patch disallows propagating zero constants in equality comparisons. 
Fixes: http://llvm.org/bugs/show_bug.cgi?id=22376

Differential Revision: http://reviews.llvm.org/D7257

llvm-svn: 227491
2015-01-29 20:51:49 +00:00
James Molloy 5f255eb48f [LoopReroll] Refactor most of reroll() into a helper class
reroll() was slightly monolithic and a pain to modify. Refactor
a bunch of its state from local variables to member variables
of a helper class, and do some trivial simplification while we're
there.

llvm-svn: 227439
2015-01-29 13:48:05 +00:00
Philip Reames 9198b33b48 Teach SplitBlockPredecessors how to handle landingpad blocks.
Patch by: Igor Laevsky <igor@azulsystems.com>

"Currently SplitBlockPredecessors generates incorrect code in case if basic block we are going to split has a landingpad. Also seems like it is fairly common case among it's users to conditionally call either SplitBlockPredecessors or SplitLandingPadPredecessors. Because of this I think it is reasonable to add this condition directly into SplitBlockPredecessors."

Differential Revision: http://reviews.llvm.org/D7157

llvm-svn: 227390
2015-01-28 23:06:47 +00:00
Chandler Carruth b81dfa6378 [LPM] Stop using the string based preservation API. It is an
abomination.

For starters, this API is incredibly slow. In order to lookup the name
of a pass it must take a memory fence to acquire a pointer to the
managed static pass registry, and then potentially acquire locks while
it consults this registry for information about what passes exist by
that name. This stops the world of LLVMs in your process no matter
how little they cared about the result.

To make this more joyful, you'll note that we are preserving many passes
which *do not exist* any more, or are not even analyses which one might
wish to have be preserved. This means we do all the work only to say
"nope" with no error to the user.

String-based APIs are a *bad idea*. String-based APIs that cannot
produce any meaningful error are an even worse idea. =/

I have a patch that simply removes this API completely, but I'm hesitant
to commit it as I don't really want to perniciously break out-of-tree
users of the old pass manager. I'd rather they just have to migrate to
the new one at some point. If others disagree and would like me to kill
it with fire, just say the word. =]

llvm-svn: 227294
2015-01-28 04:57:56 +00:00
Sanjoy Das dcf2651043 Teach IRCE to look at branch weights when recognizing range checks
Splitting a loop to make range checks redundant is profitable only if
the range check "never" fails. Make this fact a part of recognizing a
range check -- a branch is a range check only if it is expected to
pass (via branch_weights metadata).

Differential Revision: http://reviews.llvm.org/D7192

llvm-svn: 227249
2015-01-27 21:38:12 +00:00
Eric Christopher e38c8d4aa9 Migrate SeparateConstOffsetFromGEP to use a Function with
getSubtarget.

llvm-svn: 227172
2015-01-27 07:16:37 +00:00
David Majnemer 4c82daea60 LoopRotate: Don't walk the uses of a Constant
LoopRotate wanted to avoid live range interference by looking at the
uses of a Value in the loop latch and seeing if any lied outside of the
loop.  We would wrongly perform this operation on Constants.

This fixes PR22337.

llvm-svn: 227171
2015-01-27 06:21:43 +00:00
Chandler Carruth d649c0ad56 [PM] Refactor the core logic to run EarlyCSE over a function into an
object that manages a single run of this pass.

This was already essentially how it worked. Within the run function, it
would point members at *stack local* allocations that were only live for
a single run. Instead, it seems much cleaner to have a utility object
whose lifetime is clearly bounded by the run of the pass over the
function and can use member variables in a more direct way.

This also makes it easy to plumb the analyses used into it from the pass
and will make it re-usable with the new pass manager.

No functionality changed here, its just a refactoring.

llvm-svn: 227162
2015-01-27 01:34:14 +00:00
Chad Rosier f9327d6fe9 Commoning of target specific load/store intrinsics in Early CSE.
Phabricator revision: http://reviews.llvm.org/D7121
Patch by Sanjin Sijaric <ssijaric@codeaurora.org>!

llvm-svn: 227149
2015-01-26 22:51:15 +00:00
Chandler Carruth 9dea5cdb8e [PM] General doxygen and comment cleanup for this pass.
llvm-svn: 227001
2015-01-24 11:44:32 +00:00
Chandler Carruth 7253bba458 [PM] Reformat this code with clang-format so that I can use clang-format
when refactoring for the new pass manager without introducing too many
formatting changes into meaning full diffs.

llvm-svn: 227000
2015-01-24 11:33:55 +00:00
Chandler Carruth 43e590e51f [PM] Port LowerExpectIntrinsic to the new pass manager.
This just lifts the logic into a static helper function, sinks the
legacy pass to be a trivial wrapper of that helper fuction, and adds
a trivial wrapper for the new PM as well. Not much to see here.

I switched a test case to run in both modes, but we have to strip the
dead prototypes separately as that pass isn't in the new pass manager
(yet).

llvm-svn: 226999
2015-01-24 11:13:02 +00:00