The opaque pointer type is essentially just a normal pointer type with a
null pointee type.
This also adds support for the opaque pointer type to the bitcode
reader/writer, as well as to textual IR.
To avoid confusion with existing pointer types, we disallow creating a
pointer to an opaque pointer.
Opaque pointer types should not be widely used at this point since many
parts of LLVM still do not support them. The next steps are to add some
very simple use cases of opaque pointers to make sure they work, then
start pretending that all pointers are opaque pointers and see what
breaks.
https://lists.llvm.org/pipermail/llvm-dev/2021-May/150359.html
Reviewed By: dblaikie, dexonsmith, pcc
Differential Revision: https://reviews.llvm.org/D101704
LLVM's build system contains support for configuring a distribution, but
it can often be useful to be able to configure multiple distributions
(e.g. if you want separate distributions for the tools and the
libraries). Add this support to the build system, along with
documentation and usage examples.
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D89177
The internal `cl::opt` option --x86-asm-syntax sets the AsmParser and AsmWriter
dialect. The option is used by llc and llvm-mc tests to set the AsmWriter dialect.
This patch adds -M {att,intel} as GNU objdump compatible aliases (PR43413).
Note: the dialect is initialized when the MCAsmInfo is constructed.
`MCInstPrinter::applyTargetSpecificCLOption` is called too late and its MCAsmInfo
reference is const, so changing the `cl::opt` in
`MCInstPrinter::applyTargetSpecificCLOption` is not an option, at least without
large amount of refactoring.
Reviewed By: hoy, jhenderson, thakis
Differential Revision: https://reviews.llvm.org/D101695
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
This patch adds a pipeline to support in-order CPUs such as ARM
Cortex-A55.
In-order pipeline implements a simplified version of Dispatch,
Scheduler and Execute stages as a single stage. Entry and Retire
stages are common for both in-order and out-of-order pipelines.
Differential Revision: https://reviews.llvm.org/D94928
The few options are niche. They solved a problem which was traditionally solved
with more shell commands (`llvm-readelf -n` fetches the Build ID. Then
`ln` is used to hard link the file to a directory derived from the Build ID.)
Due to limitation, they are no longer used by Fuchsia and they don't appear to
be used elsewhere (checked with Google Search and Debian Code Search). So delete
them without a transition period.
Announcement: https://lists.llvm.org/pipermail/llvm-dev/2021-February/148446.html
Differential Revision: https://reviews.llvm.org/D96310
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are replaced
with the more appropriate `#if SANITIZER_GLIBC` (the headers are glibc
extensions, not specific to Linux (i.e. if we ever support GNU/kFreeBSD
or Hurd, the guards may automatically work)).
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are refined
with `#if SANITIZER_GLIBC` (the definitions are available on Linux glibc,
but may not be available on other libc (e.g. musl) implementations).
This patch makes `ninja asan cfi lsan msan stats tsan ubsan xray` build on a musl based Linux distribution (apk install musl-libintl)
Notes about disabled interceptors for musl:
* `SANITIZER_INTERCEPT_GLOB`: musl does not implement `GLOB_ALTDIRFUNC` (GNU extension)
* Some ioctl structs and functions operating on them.
* `SANITIZER_INTERCEPT___PRINTF_CHK`: `_FORTIFY_SOURCE` functions are GNU extension
* `SANITIZER_INTERCEPT___STRNDUP`: `dlsym(RTLD_NEXT, "__strndup")` errors so a diagnostic is formed. The diagnostic uses `write` which hasn't been intercepted => SIGSEGV
* `SANITIZER_INTERCEPT_*64`: the `_LARGEFILE64_SOURCE` functions are glibc specific. musl does something like `#define pread64 pread`
* Disabled `msg_iovlen msg_controllen cmsg_len` checks: musl is conforming while many implementations (Linux/FreeBSD/NetBSD/Solaris) are non-conforming. Since we pick the glibc definition, exclude the checks for musl (incompatible sizes but compatible offsets)
Pass through LIBCXX_HAS_MUSL_LIBC to make check-msan/check-tsan able to build libc++ (https://bugs.llvm.org/show_bug.cgi?id=48618).
Many sanitizer features are available now.
```
% ninja check-asan
(known issues:
* ASAN_OPTIONS=fast_unwind_on_malloc=0 odr-violations hangs
)
...
Testing Time: 53.69s
Unsupported : 185
Passed : 512
Expectedly Failed: 1
Failed : 12
% ninja check-ubsan check-ubsan-minimal check-memprof # all passed
% ninja check-cfi
( all cross-dso/)
...
Testing Time: 8.68s
Unsupported : 264
Passed : 80
Expectedly Failed: 8
Failed : 32
% ninja check-lsan
(With GetTls (D93972), 10 failures)
Testing Time: 4.09s
Unsupported: 7
Passed : 65
Failed : 22
% ninja check-msan
(Many are due to functions not marked unsupported.)
Testing Time: 23.09s
Unsupported : 6
Passed : 764
Expectedly Failed: 2
Failed : 58
% ninja check-tsan
Testing Time: 23.21s
Unsupported : 86
Passed : 295
Expectedly Failed: 1
Failed : 25
```
Used `ASAN_OPTIONS=verbosity=2` to verify there is no unneeded interceptor.
Partly based on Jari Ronkainen's https://reviews.llvm.org/D63785#1921014
Note: we need to place `_FILE_OFFSET_BITS` above `#include "sanitizer_platform.h"` to avoid `#define __USE_FILE_OFFSET64 1` in 32-bit ARM `features.h`
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93848
Use exact component name in add_ocaml_library.
Make expand_topologically compatible with new architecture.
Fix quoting in is_llvm_target_library.
Fix LLVMipo component name.
Write release note.
Only the aliases 'xzr' and 'sp' exist for the physical register x31.
The reason for wanting to remove the alias 'x31' is because it allows users
to write invalid asm that is not accepted by the GNU assembler.
Is there any objection to removing this alias? Or do we want to keep
this for compatibility with existing code that uses w31/x31?
Differential Revision: https://reviews.llvm.org/D90153
This patch mainly made the following changes:
1. Support AVX-VNNI instructions;
2. Introduce ExplicitVEXPrefix flag so that vpdpbusd/vpdpbusds/vpdpbusds/vpdpbusds instructions only use vex-encoding when user explicity add {vex} prefix.
Differential Revision: https://reviews.llvm.org/D89105
This reverts commit 55c4ff91bd.
Issues were introduced as discussed in https://reviews.llvm.org/D88241
where this change made previous bugs in the linker and BitCodeWriter
visible.
Make the corresponding change that was made for byval in
b7141207a4. Like byval, this requires a
bulk update of the test IR tests to include the type before this can
be mandatory.
It's not undefined behavior for an unsigned left shift to overflow (i.e. to
shift bits out), but it has been the source of bugs and exploits in certain
codebases in the past. As we do in other parts of UBSan, this patch adds a
dynamic checker which acts beyond UBSan and checks other sources of errors. The
option is enabled as part of -fsanitize=integer.
The flag is named: -fsanitize=unsigned-shift-base
This matches shift-base and shift-exponent flags.
<rdar://problem/46129047>
Differential Revision: https://reviews.llvm.org/D86000
This is an older syntax than the {disp32} and {disp8} pseudo
prefixes that were added a few weeks ago. We can reuse most of
the support for that to support .d32 and .d8 as well.
The TableGen range piece punctuator is currently '-' (e.g., {0-9}),
which interacts oddly with the fact that an integer literal's sign
is part of the literal. This patch replaces the '-' with the new
punctuator '...'. The '-' punctuator is deprecated.
Differential Revision: https://reviews.llvm.org/D85585
Change-Id: I3d53d14e23f878b142d8f84590dd465a0fb6c09c
This allows tracking the in-memory type of a pointer argument to a
function for ABI purposes. This is essentially a stripped down version
of byval to remove some of the stack-copy implications in its
definition.
This includes the base IR changes, and some tests for places where it
should be treated similarly to byval. Codegen support will be in a
future patch.
My original attempt at solving some of these problems was to repurpose
byval with a different address space from the stack. However, it is
technically permitted for the callee to introduce a write to the
argument, although nothing does this in reality. There is also talk of
removing and replacing the byval attribute, so a new attribute would
need to take its place anyway.
This is intended avoid some optimization issues with the current
handling of aggregate arguments, as well as fixes inflexibilty in how
frontends can specify the kernel ABI. The most honest representation
of the amdgpu_kernel convention is to expose all kernel arguments as
loads from constant memory. Today, these are raw, SSA Argument values
and codegen is responsible for turning these into loads.
Background:
There currently isn't a satisfactory way to represent how arguments
for the amdgpu_kernel calling convention are passed. In reality,
arguments are passed in a single, flat, constant memory buffer
implicitly passed to the function. It is also illegal to call this
function in the IR, and this is only ever invoked by a driver of some
kind.
It does not make sense to have a stack passed parameter in this
context as is implied by byval. It is never valid to write to the
kernel arguments, as this would corrupt the inputs seen by other
dispatches of the kernel. These argumets are also not in the same
address space as the stack, so a copy is needed to an alloca. From a
source C-like language, the kernel parameters are invisible.
Semantically, a copy is always required from the constant argument
memory to a mutable variable.
The current clang calling convention lowering emits raw values,
including aggregates into the function argument list, since using
byval would not make sense. This has some unfortunate consequences for
the optimizer. In the aggregate case, we end up with an aggregate
store to alloca, which both SROA and instcombine turn into a store of
each aggregate field. The optimizer never pieces this back together to
see that this is really just a copy from constant memory, so we end up
stuck with expensive stack usage.
This also means the backend dictates the alignment of arguments, and
arbitrarily picks the LLVM IR ABI type alignment. By allowing an
explicit alignment, frontends can make better decisions. For example,
there's real no advantage to an aligment higher than 4, so a frontend
could choose to compact the argument layout. Similarly, there is a
high penalty to using an alignment lower than 4, so a frontend could
opt into more padding for small arguments.
Another design consideration is when it is appropriate to expose the
fact that these arguments are all really passed in adjacent
memory. Currently we have a late IR optimization pass in codegen to
rewrite the kernel argument values into explicit loads to enable
vectorization. In most programs, unrelated argument loads can be
merged together. However, exposing this property directly from the
frontend has some disadvantages. We still need a way to track the
original argument sizes and alignments to report to the driver. I find
using some side-channel, metadata mechanism to track this
unappealing. If the kernel arguments were exposed as a single buffer
to begin with, alias analysis would be unaware that the padding bits
betewen arguments are meaningless. Another family of problems is there
are still some gaps in replacing all of the available parameter
attributes with metadata equivalents once lowered to loads.
The immediate plan is to start using this new attribute to handle all
aggregate argumets for kernels. Long term, it makes sense to migrate
all kernel arguments, including scalars, to be passed indirectly in
the same manner.
Additional context is in D79744.
This patch changes llvm-readelf (and llvm-readobj for consistency)
behavior to print an error when executed with no input files.
Reading from stdin can be achieved via a '-' for the input
object.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46400
Differential Revision: https://reviews.llvm.org/D83704
Reviewed by: jhenderson, MaskRay, sbc, jyknight
Implement the `hasProtectedVisibility()` hook to indicate that, like
Darwin, WebAssembly doesn't support "protected" visibility.
On ELF, "protected" visibility is intended to be an optimization, however
in practice it often [isn't], and ELF documentation generally ranges from
[not mentioning it at all] to [strongly discouraging its use].
[isn't]: https://www.airs.com/blog/archives/307
[not mentioning it at all]: https://gcc.gnu.org/wiki/Visibility
[strongly discouraging its use]: https://www.akkadia.org/drepper/dsohowto.pdf
While here, also mention the new Reactor support in the release notes.
Summary:
An upgrade of LLVM for CrOS [0] containing [1] triggered a bunch of
errors related to writing to reserved registers for a Linux kernel's
arm64 compat vdso (which is a aarch32 image).
After a discussion on LKML [2], it was determined that
-f{no-}omit-frame-pointer was not being specified. Comparing GCC and
Clang [3], it becomes apparent that GCC defaults to omitting the frame
pointer implicitly when optimizations are enabled, and Clang does not.
ie. setting -O1 (or above) implies -fomit-frame-pointer. Clang was
defaulting to -fno-omit-frame-pointer implicitly unless -fomit-frame-pointer
was set explicitly.
Why this becomes a problem is that the Linux kernel's arm64 compat vdso
contains code that uses r7. r7 is used sometimes for the frame pointer
(for example, when targeting thumb (-mthumb)). See useR7AsFramePointer()
in llvm/llvm-project/llvm/lib/Target/ARM/ARMSubtarget.h. This is mostly
for legacy/compatibility reasons, and the 2019 Q4 revision of the ARM
AAPCS looks to standardize r11 as the frame pointer for aarch32, though
this is not yet implemented in LLVM.
Users that are reliant on the implicit value if unspecified when
optimizations are enabled should explicitly choose -fomit-frame-pointer
(new behavior) or -fno-omit-frame-pointer (old behavior).
[0] https://bugs.chromium.org/p/chromium/issues/detail?id=1084372
[1] https://reviews.llvm.org/D76848
[2] https://lore.kernel.org/lkml/20200526173117.155339-1-ndesaulniers@google.com/
[3] https://godbolt.org/z/0oY39t
Reviewers: kristof.beyls, psmith, danalbert, srhines, MaskRay, ostannard, efriedma
Reviewed By: psmith, danalbert, srhines, MaskRay, efriedma
Subscribers: efriedma, olista01, MaskRay, vhscampos, cfe-commits, llvm-commits, manojgupta, llozano, glider, hctim, eugenis, pcc, peter.smith, srhines
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D80828