Current approach for initial-exec in ELF/x86_64 is to create a GOT entry
and change the relocation to R_X86_64_PC32 to be handled as a GOT offfset.
However there are two issues with this approach: 1. the R_X86_64_PC32 is
not really required since the GOT relocation will be handle dynamically and
2. the TLS symbols are not being exported externally and then correct
realocation are not being applied.
This patch fixes the R_X86_64_GOTTPOFF handling by just emitting a
R_X86_64_TPOFF64 dynamically one; it also sets R_X86_64_TPOFF64 to be
handled by runtime one. For second part, the patches uses a similar
strategy used for aarch64, by reimplementing buildDynamicSymbolTable
from X86_64ExecutableWriter and adding the TLS symbols in the dynamic
symbol table.
Some tests had to be adjusted due the now missing R_X86_64_PC32 relocation.
With this test the simple testcase:
* t1.c:
__thread int t0;
__thread int t1;
__thread int t2;
__thread int t3;
* t0.c:
extern __thread int t0;
extern __thread int t1;
extern __thread int t2;
extern __thread int t3;
__thread int t4;
__thread int t5;
__thread int t6;
__thread int t7;
int main ()
{
t0 = 1;
t1 = 2;
t2 = 3;
t3 = 4;
t4 = 5;
t5 = 6;
t6 = 7;
t7 = 8;
printf ("%i %i %i %i\n", t0, t1, t2, t3);
printf ("%i %i %i %i\n", t4, t5, t6, t7);
return 0;
}
Shows correct output for x86_64.
llvm-svn: 239908
I noticed that gold mark these as hidden. While at it I rewrote the test for
this feature to use yaml rather than an object file as input.
Differential Revision: http://reviews.llvm.org/D9418
Reviewed by: ruiu
llvm-svn: 236291
Yet another chapter in the story. We're getting there, finally.
Note for the future: the tests for relocation have a lot of duplication
and probably can be unified in a single file. Let's reevaluate this once
the support will be complete (hopefully, soon).
llvm-svn: 231057
Previously we applied the LayoutPass to order atoms and then
apply elf::ArrayOrderPass to sort them again. The first pass is
basically supposed to sort atoms in the normal fashion (which
is to sort symbols in the same order as the input files).
The second pass sorts atoms in {init,fini}_array.<priority> by
priority.
The problem is that the LayoutPass is overkill. It analyzes
references between atoms to make a decision how to sort them.
It's slow, hard to understand, and above all, it doesn't seem
that we need its feature for ELF in the first place.
This patch remove the LayoutPass from ELF pass list. Now all
reordering is done in elf::OrderPass. That pass sorts atoms by
{init,fini}_array, and if they are not in the special section,
they are ordered as the same order as they appear in the command
line. The new code is far easier to understand, faster, and
still able to create valid executables.
Unlike the previous layout pass, elf::OrderPass doesn't count
any attributes of an atom (e.g. permissions) except its
position. It's OK because the writer takes care of them if we
have to.
This patch changes the order of final output, although that's
benign. Tests are updated.
http://reviews.llvm.org/D7278
llvm-svn: 227666
The LLD linker searches initializer and finalizer function names
and emits DT_INIT/DT_FINI dynamic table tags to point to these symbols.
The -init/-fini command line options override initializer ("_init") and
finalizer ("_fini") function names used by default.
Now the -init/-fini options do not affect .init_array/.fini_array
sections. The corresponding code has been removed.
Differential Revision: http://reviews.llvm.org/D6578
llvm-svn: 223917
With --no-align-segments, there is a bug that the fileoffset may not be
congruent to virtual address modulo page alignment.
This patch fixes the problem.
llvm-svn: 221890
The user can use the max-page-size option and set the maximum page size. Dont
check for maximum allowed values for page size, as its what the kernel is
configured with.
Fix the test as well.
llvm-svn: 221858
lld generates an ELF by adhering to the ELF spec by aligning vma/fileoffset to a
page boundary, but this becomes an issue when dealing with large pages. This
adds support so that lld generated executables adheres to the ELF spec with the
rule vma % p_align = offset % p_align.
This is supported by the flag --no-align-segments.
This could be the default in few targets like X86_64 to save space on disk.
llvm-svn: 221571
HAVE_CXXABI_H is not defined on FreeBSD but the system actually
has the header. CMake test fails because the header depends on size_t.
llvm-svn: 220315
The canParse function for all the ELF subtargets check if the input files match
the subtarget.
There were few mismatches in the input files that didnt match the subtarget for
which the link was being invoked, which also acts as a test for this change.
llvm-svn: 220182
For PC relative accesses, negative addends were to be ignored. The linker was
not ignoring it and would fail with an assert. This fixes the issue and is able
to get Helloworld working.
llvm-svn: 220179
This commit implements in the X86_64 ELF lld backend yet another feature that
was only available in the MIPS backend. However, this patch changes generic ELF
classes to make it trivial for other ELF backends to use this logic too. When
creating a dynamic executable that has dynamic relocations against weak
undefined symbols, these symbols must be exported to the dynamic symbol table
to seek a possible resolution at run time.
A common use case is the __gmon_start__ weak glibc undefined symbol.
Reviewer: shankarke
http://reviews.llvm.org/D5571
llvm-svn: 219349
Summary:
This patch adds support for the general dynamic TLS access model for X86_64 (see www.akkadia.org/drepper/tls.pdf).
To properly support TLS, the patch also changes the __tls_get_addr atom to be a shared library atom instead of a regularly defined atom (the previous lld approach). This closely models the reality of a function that will be resolved at runtime by the dynamic linker and loader itself (ld.so). I was tempted to force LLD to link against ld.so itself to resolve these symbols, but since GNU ld does not need the ld.so library to resolve this symbol, I decided to mimic its behavior and keep hardwired a definition of __tls_get_addr in the lld code.
This patch also moves some important logic that previously was only available to the MIPS lld backend to be used to all ELF backends. This logic, which now lives in the DefaultLayout class, will monitor which external (shared lib) symbols are really imported by the current module and will only populate the dynamic symbol table with used symbols, as opposed to the previous approach of dumping all shared lib symbols in the dynamic symbol table. This is important to this patch to avoid __tls_get_addr from getting injected into all dynamic symbol tables.
By solving the previous problem of always adding __tls_get_addr, now the produced symbol tables are slightly smaller. But this impacted several tests that relied on hardwired/predefined sizes of the symbol table, requiring this patch to update such tests.
Test Plan: Added a LIT test case that exercises a simple use case of TLS variable in a shared library.
Reviewers: ruiu, rafael, Bigcheese, shankarke
Reviewed By: Bigcheese, shankarke
Subscribers: emaste, shankarke, joerg, kledzik, mcrosier, llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D5505
llvm-svn: 218633
defined in a shared library.
Now LLD does not export a strong defined symbol if it coalesces away a
weak symbol defined in a shared library. This bug affects all ELF
architectures and leads to segfault:
% cat foo.c
extern int __attribute__((weak)) flag;
int foo() { return flag; }
% cat main.c
int flag = 1;
int foo();
int main() { return foo() == 1 ? 0 : -1; }
% clang -c -fPIC foo.c main.c
% lld -flavor gnu -target x86_64 -shared -o libfoo.so ... foo.o
% lld -flavor gnu -target x86_64 -o a.out ... main.o libfoo.so
% ./a.out
Segmentation fault
The problem is caused by the fact that we lose all information about
coalesced symbols after the `Resolver::resolve()` method is finished.
The patch solves the problem by overriding the
`LinkingContext::notifySymbolTableCoalesce()` method and saving names
of coalesced symbols. Later in the `buildDynamicSymbolTable()` routine
we use this information to export these symbols.
llvm-svn: 217363
In r205566, I made a change to Resolver so that Resolver revisit
only archive files in --start-group and --end-group pair. That's
not correct, as it also has to revisit DSO files.
This patch is to fix the issue.
Added a test to demonstrate the fix. I confirmed that it succeeded
before r205566, failed after r205566, and is ok with this patch.
Differential Revision: http://reviews.llvm.org/D3734
llvm-svn: 208797
Currently LLD supports --defsym only in the form of
--defsym=<symbol>=<integer>, where the integer is interpreted as the
absolute address of the symbol. This patch extends it to allow other
symbol name to be given as an RHS value. If a RHS value is a symbol
name, the LHS symbol will be defined as an alias for the RHS symbol.
Internally, a LHS symbol is represented as a zero-size defined atom
who has an LayoutAfter reference to an undefined atom, whose name is
the RHS value. Everything else is already implemented -- Resolver
will resolve the undefined symbol, and the layout pass will layout
the two atoms at the same location. Looks like it's working fine.
Note that GNU LD supports --defsym=<symbol>=<symbol>+<addend>. That
feature is out of scope of this patch.
Differential Revision: http://reviews.llvm.org/D3332
llvm-svn: 206417
This adds functionality to limit shared library undefined atoms to be added
only once by the Resolver.
Dynamic libraries may be processed more than once if they exist within a
Group.
Also adds a test to verify the change.
llvm-svn: 195307
On Windows, neither "(" nor ")" are shell special characters, so -\( is passed
as-is to LLD. Because of that this test was failing on Windows.
llvm-svn: 193905