Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perform the
preversation was minimally altered and simply marked as
preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements such as threading across loop headers.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: mgorny, dmgreen, kuba, rnk, rsmith, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 322401
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 321825
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 320612
These command line options are not intended for public use, and often
don't even make sense in the context of a particular tool anyway. About
90% of them are already hidden, but when people add new options they
forget to hide them, so if you were to make a brand new tool today, link
against one of LLVM's libraries, and run tool -help you would get a
bunch of junk that doesn't make sense for the tool you're writing.
This patch hides these options. The real solution is to not have
libraries defining command line options, but that's a much larger effort
and not something I'm prepared to take on.
Differential Revision: https://reviews.llvm.org/D40674
llvm-svn: 319505
Summary:
This patch introduces a way of informing the (Post)DominatorTree about multiple CFG updates that happened since the last tree update. This makes performing tree updates much easier, as it internally takes care of applying the updates in lockstep with the (virtual) updates to the CFG, which is done by reverse-applying future CFG updates.
The batch updater is able to remove redundant updates that cancel each other out. In the future, it should be also possible to reorder updates to reduce the amount of work needed to perform the updates.
Reviewers: dberlin, sanjoy, grosser, davide, brzycki
Reviewed By: brzycki
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D36167
llvm-svn: 311015
Summary:
This patch moves root-finding logic from DominatorTreeBase to GenericDomTreeConstruction.h.
It makes the behavior simpler and more consistent by always adding a virtual root to PostDominatorTrees.
Reviewers: dberlin, davide, grosser, sanjoy
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35597
llvm-svn: 309146
Summary:
This patch implements incremental edge deletions.
It also makes DominatorTreeBase store a pointer to the parent function. The parent function is needed to perform full rebuilts during some deletions, but it is also used to verify that inserted and deleted edges come from the same function.
Reviewers: dberlin, davide, grosser, sanjoy, brzycki
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35342
llvm-svn: 308062
Summary:
This patch introduces incremental edge insertions based on the Depth Based Search algorithm.
Insertions should work for both dominators and postdominators.
Reviewers: dberlin, grosser, davide, sanjoy, brzycki
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35341
llvm-svn: 308054
Summary:
DominatorTreeBase used to have IsPostDominators (bool) member to indicate if the tree is a dominator or a postdominator tree. This made it possible to switch between the two 'modes' at runtime, but it isn't used in practice anywhere.
This patch makes IsPostDominator a template argument. This way, it is easier to switch between different algorithms at compile-time based on this argument and design external utilities around it. It also makes it impossible to incidentally assign a postdominator tree to a dominator tree (and vice versa), and to further simplify template code in GenericDominatorTreeConstruction.
Reviewers: dberlin, sanjoy, davide, grosser
Reviewed By: dberlin
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35315
llvm-svn: 308040
Summary: DominatorTreeBase and related classes used overcomplicated template machinery. This patch simplifies them and gets rid of DominatorTreeBaseTraits and DominatorTreeBaseByTraits, which weren't actually used outside the DomTree construction.
Reviewers: dberlin, sanjoy, davide, grosser
Reviewed By: dberlin, davide, grosser
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35285
llvm-svn: 307953
Summary:
Some transforms assume that DT.verifyDomInfo() is not expensive and call it even when ENABLE_EXPENSIVE_CHECKS is not set.
This patch disables expensive Dominator Tree verification (reachability, parent property, sibling property) to fix
[[ https://bugs.llvm.org/show_bug.cgi?id=33656 | PR33656 ]].
Note that this is only a temporary fix.
Reviewers: dberlin, chapuni, kparzysz, grosser
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34894
llvm-svn: 306839
Summary:
This patch adds an additional level of verification - it checks parent and sibling properties of a tree. By definition, every tree with these two properties is a dominator tree.
It is possible to run those check by running llvm with `-verify-dom-info=1`.
Bootstrapping clang and building the llvm test suite with this option enabled doesn't yield any errors.
Reviewers: dberlin, sanjoy, chandlerc
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34482
llvm-svn: 306711
This removes a quadratic behavior in assert-enabled builds.
GVN propagates the equivalence from a condition into the blocks guarded by the
condition. E.g. for 'if (a == 7) { ... }', 'a' will be replaced in the block
with 7. It does this by replacing all the uses of 'a' that are dominated by
the true edge.
For a switch with N cases and U uses of the value, this will mean N * U calls
to 'dominates'. Asserting isSingleEdge in 'dominates' make this N^2 * U
because this function checks for the uniqueness of the edge. I.e. traverses
each edge between the SwitchInst's block and the cases.
The change removes the assert and makes 'dominates' works correctly in the
presence of non-unique edges.
This brings build time down by an order of magnitude for an input that has
~10k cases in a switch statement.
Differential Revision: https://reviews.llvm.org/D33584
llvm-svn: 304721
If dominator tree has no roots, the pass that calculates it is
likely to be skipped. It occures, for instance, in the case of
entities with linkage available_externally. Do not run tree
verification in such case.
Differential Revision: https://reviews.llvm.org/D28767
llvm-svn: 293033
Verifications of dominator tree and loop info are expensive operations
so they are disabled by default. They can be enabled by command line
options -verify-dom-info and -verify-loop-info. These options however
enable checks only in files Dominators.cpp and LoopInfo.cpp. If some
transformation changes dominaror tree and/or loop info, it would be
convenient to place similar checks to the files implementing the
transformation.
This change makes corresponding flags global, so they can be used in
any file to optionally turn verification on.
llvm-svn: 292889
a function's CFG when that CFG is unchanged.
This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.
I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.
Differential Revision: https://reviews.llvm.org/D28627
llvm-svn: 292054
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.
This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.
However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.
And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.
This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.
We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.
Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!
While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.
Differential Revision: https://reviews.llvm.org/D27031
llvm-svn: 287783
Summary:
Looking at the implementation, GenericDomTree has more specific
requirements on NodeRef, e.g. NodeRefObject->getParent() should compile,
and NodeRef should be a pointer. We can remove the pointer requirement,
but it seems to have little gain, given the limited use cases.
Also changed GraphTraits<Inverse<Inverse<T>> to be more accurate.
Reviewers: dblaikie, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23593
llvm-svn: 278961
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
llvm-svn: 272978
Summary:
Historically, we had a switch in the Makefiles for turning on "expensive
checks". This has never been ported to the cmake build, but the
(dead-ish) code is still around.
This will also make it easier to turn it on in buildbots.
Reviewers: chandlerc
Subscribers: jyknight, mzolotukhin, RKSimon, gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D19723
llvm-svn: 268050
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
llvm-svn: 263219
work in the face of the limitations of DLLs and templated static
variables.
This requires passes that use the AnalysisBase mixin provide a static
variable themselves. So as to keep their APIs clean, I've made these
private and befriended the CRTP base class (which is the common
practice).
I've added documentation to AnalysisBase for why this is necessary and
at what point we can go back to the much simpler system.
This is clearly a better pattern than the extern template as it caught
*numerous* places where the template magic hadn't been applied and
things were "just working" but would eventually have broken
mysteriously.
llvm-svn: 263216
analyses in the new pass manager.
These just handle really basic stuff: turning a type name into a string
statically that is nice to print in logs, and getting a static unique ID
for each analysis.
Sadly, the format of passes in anonymous namespaces makes using their
names in tests really annoying so I've customized the names of the no-op
passes to keep tests sane to read.
This is the first of a few simplifying refactorings for the new pass
manager that should reduce boilerplate and confusion.
llvm-svn: 262004
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
I folded the check for the flag -verify-dom-info into the only caller
where I think it is supposed to be checked: verifyAnalysis. (The idea
of the flag is to enable this expensive verification in
verifyPreservedAnalysis.)
I'm assuming that when manually scheduling the verification pass
with -passes=verify<domtree>, we do want to perform the verification.
llvm-svn: 236575
This adds the domtree analysis to the new pass manager. The analysis
returns the same DominatorTree result entity used by the old pass
manager and essentially all of the code is shared. We just have
different boilerplate for running and printing the analysis.
I've converted one test to run in both modes just to make sure this is
exercised while both are live in the tree.
llvm-svn: 225969
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
This should be a small build time improvement in general and fixes
the build on OS X with -DBUILD_SHARED_LIBS=ON.
The issue is that not all users are including GenericDomTreeConstruction.h,
causing undefined references when ld64 managed to hide the
linkonce_odr symbols.
llvm-svn: 201440
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
llvm-svn: 199104
trees into the Support library.
These are all expressed in terms of the generic GraphTraits and CFG,
with no reliance on any concrete IR types. Putting them in support
clarifies that and makes the fact that the static analyzer in Clang uses
them much more sane. When moving the Dominators.h file into the IR
library I claimed that this was the right home for it but not something
I planned to work on. Oops.
So why am I doing this? It happens to be one step toward breaking the
requirement that IR verification can only be performed from inside of
a pass context, which completely blocks the implementation of
verification for the new pass manager infrastructure. Fixing it will
also allow removing the concept of the "preverify" step (WTF???) and
allow the verifier to cleanly flag functions which fail verification in
a way that precludes even computing dominance information. Currently,
that results in a fatal error even when you ask the verifier to not
fatally error. It's awesome like that.
The yak shaving will continue...
llvm-svn: 199095
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
llvm-svn: 199082
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
llvm-svn: 198836
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
llvm-svn: 198688