This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], but currently only the
'PowerPC HTM Low Level Built-in Function' are implemented.
The HTM instructions follows the RC ones and the transaction initiation result
is set on RC0 (with exception of tcheck). Currently approach is to create a
register copy from CR0 to GPR and comapring. Although this is suboptimal, since
the branch could be taken directly by comparing the CR0 value, it generates code
correctly on both test and branch and just return value. A possible future
optimization could be elimitate the MFCR instruction to branch directly.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a clang patch to enabled the builtins and option switch.
[1] https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8247
llvm-svn: 233204
Some languages, such as Go, have pre-defined structure types (e.g. "string"
is essentially a pointer/length pair) or pre-defined "typedef" types
(e.g. "error" is essentially a typedef for a specific interface type).
Such types do not have associated source location, so a Go frontend would
be correct not to associate a file name with such types.
This change relaxes the DIType verifier to permit unlocated types with
these tags.
Differential Revision: http://reviews.llvm.org/D8588
llvm-svn: 233200
This patch allows AVX blend instructions to handle insertion into the low
element of a 256-bit vector for the appropriate data types.
For f32, instead of:
vblendps $1, %xmm1, %xmm0, %xmm1 ## xmm1 = xmm1[0],xmm0[1,2,3]
vblendps $15, %ymm1, %ymm0, %ymm0 ## ymm0 = ymm1[0,1,2,3],ymm0[4,5,6,7]
we get:
vblendps $1, %ymm1, %ymm0, %ymm0 ## ymm0 = ymm1[0],ymm0[1,2,3,4,5,6,7]
For f64, instead of:
vmovsd %xmm1, %xmm0, %xmm1 ## xmm1 = xmm1[0],xmm0[1]
vblendpd $3, %ymm1, %ymm0, %ymm0 ## ymm0 = ymm1[0,1],ymm0[2,3]
we get:
vblendpd $1, %ymm1, %ymm0, %ymm0 ## ymm0 = ymm1[0],ymm0[1,2,3]
For the hardware-neglected integer data types, I left a TODO comment in the
code and added regression tests for a follow-on patch.
Differential Revision: http://reviews.llvm.org/D8609
llvm-svn: 233199
1. There were no CHECK-LABELs, so we could match instructions from the wrong function.
2. The use of zero operands meant multiple xor instructions could match some CHECKs.
3. The test was over-specified to need a Sandybridge CPU and Darwin triple.
llvm-svn: 233198
The previous logic was to first try without relocations at all
and failing that stop on the first defined symbol.
That was inefficient and incorrect in the case part of the
expression could be simplified and another part could not
(see included test).
We now stop the evaluation when we get to a variable whose value
can change (i.e. is weak).
llvm-svn: 233187
This ensures that we're building and testing the CompileOnDemand layer, at least
in a basic way.
Currently x86-64 only, and with limited to no library calls enabled (depending
on host platform). Patches welcome. ;)
To enable access to the lazy JIT, this patch replaces the '-use-orcmcjit' lli
option with a new option:
'-jit-kind={ mcjit | orc-mcjit | orc-lazy }'.
All regression tests are updated to use the new option, and one trivial test of
the new lazy JIT is added.
llvm-svn: 233182
In r233009 we gained specific check-llvm-* build targets for invoking
specific parts of the test suite, but they were copying the
dependencies for check-all, rather than just listing the dependencies
for check-llvm.
This moves the creation of these targets next to the check-llvm
target, and uses that target's configuration rather than the check-all
config.
llvm-svn: 233174
At least one Linux bot [1] doesn't like my dwarfdump checks, so I've
disable those until I can investigate what's going on there. I'll
continue to track this in PR22792.
[1]: http://bb.pgr.jp/builders/cmake-llvm-x86_64-linux/builds/22863
llvm-svn: 233165
Instead of dropping subprograms that have been overridden, just set
their function pointers to `nullptr`. This is a minor adjustment to the
stop-gap fix for PR21910 committed in r224487, and fixes the crasher
from PR22792.
The problem that r224487 put a band-aid on: how do we find the canonical
subprogram for a `Function`? Since the backend currently relies on
`DebugInfoFinder` (which does a naive in-order traversal of compile
units and picks the first subprogram) for this, r224487 tried dropping
non-canonical subprograms.
Dropping subprograms fails because the backend *also* builds up a map
from subprogram to compile unit (`DwarfDebug::SPMap`) based on the
subprogram lists. A missing subprogram causes segfaults later when an
inlined reference (such as in this testcase) is created.
Instead, just drop the `Function` pointer to `nullptr`, which nicely
mirrors what happens when an already-inlined `Function` is optimized
out. We can't really be sure that it's the same definition anyway, as
the testcase demonstrates.
This still isn't completely satisfactory. Two flaws at least that I can
think of:
- I still haven't found a straightforward way to make this symmetric
in the IR. (Interestingly, the DWARF output is already symmetric,
and I've tested for that to be sure we don't regress.)
- Using `DebugInfoFinder` to find the canonical subprogram for a
function is kind of crazy. We should just attach metadata to the
function, like this:
define weak i32 @foo(i32, i32) !dbg !MDSubprogram(...) {
llvm-svn: 233164
Reverts the code change from r221168 and the relevant test.
It was a mistake to disable the combiner, and based on the ultimate
definition of 'optnone' we shouldn't have considered the test case
as failing in the first place.
llvm-svn: 233153
A load from an invariant location is assumed to not alias any otherwise potentially aliasing stores. Our implementation only applied this rule to store instructions themselves whereas they it should apply for any memory accessing instruction. This results in both FRE and PRE becoming more effective at eliminating invariant loads.
Note that as a follow on change I will likely move this into AliasAnalysis itself. That's where the TBAA constant flag is handled and the semantics are essentially the same. I'd like to separate the semantic change from the refactoring and thus have extended the hack that's already in MemoryDependenceAnalysis for this change.
Differential Revision: http://reviews.llvm.org/D8591
llvm-svn: 233140
In a subtraction of the form A - B, if B is weak, there is no way to represent
that on ELF since all relocations add the value of a symbol.
llvm-svn: 233139
We can't use TargetFrameLowering::getFrameIndexOffset directly, because
Win64 really wants the offset from the stack pointer at the end of the
prologue. Instead, use X86FrameLowering::getFrameIndexOffsetFromSP(),
which is a pretty close approximiation of that. It fails to handle cases
with interestingly large stack alignments, which is pretty uncommon on
Win64 and is TODO.
llvm-svn: 233137
A while ago llvm-cov gained support for clang's instrumentation based
profiling in addition to its gcov support, and subcommands were added
to choose which behaviour to use. When no subcommand was specified, we
fell back to gcov compatibility with a warning that a subcommand would
be required in the future. Now, we require the subcommand.
Note that if the basename of llvm-cov is gcov (via symlink or
hardlink, for example), we still use the gcov compatible behaviour
with no subcommand required.
llvm-svn: 233132
The changes to InstCombine (& SCEV) do seem a bit silly - it doesn't make
anything obviously better to have the caller access the pointers element
type (the thing I'm trying to remove) than the GEP itself, but it's a
helpful migration step. This will allow me to more obviously lock down
GEP (& Load, etc) API usage, then fix all the code that accesses pointer
element types except the places that need to be removed (most of the
InstCombines) anyway - at which point I'll need to just remove all that
code because it won't be meaningful anymore (there will be no pointer
types, so no bitcasts to combine)
SCEV looks like it'll need some restructuring - we'll have to do a bit
more work for GEP canonicalization, since it'll depend on how it's used
if we can even manage to canonicalize it to a non-ugly GEP. I guess we
can do some fun stuff like voting (do 2 out of 3 load from the GEP with
a certain type that gives a pretty GEP? Does every typed use of the GEP
use either a specific type or a generic type (i8*, etc)?)
llvm-svn: 233131
It seems one windows bot fails since I added ilne table linking to
llvm-dsymutil (see r232333 commit thread).
Disable the affected tests until I can figure out what's happening.
llvm-svn: 233130
The changes to InstCombine do seem a bit silly - it doesn't make
anything obviously better to have the caller access the pointers element
type (the thing I'm trying to remove) than the GEP itself, but it's a
helpful migration step. This will allow me to more obviously lock down
GEP (& Load, etc) API usage, then fix all the code that accesses pointer
element types except the places that need to be removed (most of the
InstCombines) anyway - at which point I'll need to just remove all that
code because it won't be meaningful anymore (there will be no pointer
types, so no bitcasts to combine)
llvm-svn: 233126
This patch tries to merge duplicate landing pads when they branch to a common shared target.
Given IR that looks like this:
lpad1:
%exn = landingpad {i8*, i32} personality i32 (...)* @__gxx_personality_v0
cleanup
br label %shared_resume
lpad2:
%exn2 = landingpad {i8*, i32} personality i32 (...)* @__gxx_personality_v0
cleanup
br label %shared_resume
shared_resume:
call void @fn()
ret void
}
We can rewrite the users of both landing pad blocks to use one of them. This will generally allow the shared_resume block to be merged with the common landing pad as well.
Without this change, tail duplication would likely kick in - creating N (2 in this case) copies of the shared_resume basic block.
Differential Revision: http://reviews.llvm.org/D8297
llvm-svn: 233125
This code depended on a bug in the FindAssociatedSection function that would
cause it to return the wrong result for certain absolute expressions. Instead,
use EvaluateAsRelocatable.
llvm-svn: 233119
Assert that this doesn't fire - I'll remove all of this later, but just
leaving it in for a while in case this is firing & we just don't have
test coverage.
llvm-svn: 233116
This is the IR optimizer follow-on patch for D8563: the x86 backend patch
that converts this kind of shuffle back into a vperm2.
This is also a continuation of the transform that started in D8486.
In that patch, Andrea suggested that we could convert vperm2 intrinsics that
use zero masks into a single shuffle.
This is an implementation of that suggestion.
Differential Revision: http://reviews.llvm.org/D8567
llvm-svn: 233110
This caused PR23008, compiles failing with: "Use still stuck around after Def is
destroyed: %.sroa.speculated"
Also reverting follow-up r233064.
llvm-svn: 233105
IRCE requires the induction variables it handles to not sign-overflow.
The current scheme of checking if sext({X,+,S}) == {sext(X),+,sext(S)}
fails when SCEV simplifies sext(X) too. After this change we //also//
check no-signed-wrap by looking at the flags set on the SCEVAddRecExpr.
llvm-svn: 233102
vperm2x128 instructions have the special ability (aka free hardware capability)
to shuffle zero values into a vector.
This patch recognizes that type of shuffle and generates the appropriate
control byte.
https://llvm.org/bugs/show_bug.cgi?id=22984
Differential Revision: http://reviews.llvm.org/D8563
llvm-svn: 233100
Move definition of `MDLocation` after `MDLocalScope` so that the latter
is available for casts in the former. Similarly, move the definition of
`MDFile` as early as possible so that other classes can cast to it in
their definitions. (Follow-up commits will take advantage of this.)
llvm-svn: 233096
The main verifier already recurses through the other entry points, so we
might as well descend here too.
This temporarily duplicates some work already done in
`verifyDebugInfo()`, but eventually I'll be removing the other side.
llvm-svn: 233095
Add a subclass of `MDScope` to explicitly categorize the legal scopes
for locals -- in particular, scopes that are legal for `MDLocation`,
`MDLexicalBlockBase`, and `MDLocalVariable`. This provides a convenient
`isa<>` target for the verifier, and eventually I'll be changing the
above classes' `getScope()` to specifically return it. Currently, its
subclasses are `MDSubprogram`, `MDLexicalBlock`, and
`MDLexicalBlockFile`.
I've gone with `MDLocalScope` for now -- a little ambiguous since it's a
scope *for* locals, not a scope that's local -- but I'm open to more
descriptive names if someone can think of something better. Regardless,
the code docs should make it clear enough.
llvm-svn: 233092
Simplify boolean expressions using `true` and `false` with `clang-tidy`
Patch by Richard Thomson.
Reviewed By: nlewycky
Differential Revision: http://reviews.llvm.org/D8528
llvm-svn: 233091
Simplify boolean expressions using `true` and `false` with `clang-tidy`
Patch by Richard Thomson.
Reviewed By: rengolin
Differential Revision: http://reviews.llvm.org/D8525
llvm-svn: 233089
This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
Summary:
Previous behaviour of 'R' and 'm' has been preserved for now. They will be
improved in subsequent commits.
The offset permitted by ZC varies according to the subtarget since it is
intended to match the restrictions of the pref, ll, and sc instructions.
The restrictions on these instructions are:
* For microMIPS: 12-bit signed offset.
* For Mips32r6/Mips64r6: 9-bit signed offset.
* Otherwise: 16-bit signed offset.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8414
llvm-svn: 233063
It is possible to have code that converts from integer to float, performs operations then converts back, and the result is provably the same as if integers were used.
This can come from different sources, but the most obvious is a helper function that uses floats but the arguments given at an inlined callsites are integers.
This pass considers all integers requiring a bitwidth less than or equal to the bitwidth of the mantissa of a floating point type (23 for floats, 52 for doubles) as exactly representable in floating point.
To reduce the risk of harming efficient code, the pass only attempts to perform complete removal of inttofp/fptoint operations, not just move them around.
llvm-svn: 233062
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
This just updates the code to reflect the comment, but this bug actually hit the
out-of-tree lazy demo. I'm working on a patch to add the lazy-demo's
functionality to lli so that we can test this in-tree soon.
llvm-svn: 233047
While the uitofp scalar constant folding treats an integer as an unsigned value (from lang ref):
%X = sitofp i8 -1 to double ; yields double:-1.0
%Y = uitofp i8 -1 to double ; yields double:255.0
The vector constant folding was always using sitofp:
%X = sitofp <2 x i8> <i8 -1, i8 -1> to <2 x double> ; yields <double -1.0, double -1.0>
%Y = uitofp <2 x i8> <i8 -1, i8 -1> to <2 x double> ; yields <double -1.0, double -1.0>
This patch fixes this so that the correct opcode is used for sitofp and uitofp.
%X = sitofp <2 x i8> <i8 -1, i8 -1> to <2 x double> ; yields <double -1.0, double -1.0>
%Y = uitofp <2 x i8> <i8 -1, i8 -1> to <2 x double> ; yields <double 255.0, double 255.0>
Differential Revision: http://reviews.llvm.org/D8560
llvm-svn: 233033
Continue to simplify the `DIDescriptor` subclasses, so that they behave
more like raw pointers. Remove `getRaw()`, replace it with an
overloaded `get()`, and overload the arrow and cast operators. Two
testcases started to crash on the arrow operators with this change
because of `scope:` references that weren't real scopes. I fixed them.
Soon I'll add verifier checks for them too.
This also adds explicit dereference operators. Previously, the builtin
dereference against `operator MDNode *()` would have worked, but now the
builtins are ambiguous.
llvm-svn: 233030
There is now a canonical symbol at the end of a section that different
passes can request.
This also allows us to assert that we don't switch back to a section whose
end symbol has already been printed.
llvm-svn: 233026
The loop and error handling in checkMachOAndArchFlags didn't make sense
to me (a loop that only ever executes once? An error path that uses the
element the loop stopped at (which must always be a buffer overrun if
I'm reading that right?)... I'm confused) but I've made a guess at what
was intended.
Based on a patch by Richard Thomson to simplify boolean expressions.
llvm-svn: 233025
The pass used to be enabled by default with CodeGenOpt::Less (-O1).
This is too aggressive, considering the pass indiscriminately merges
all globals together.
Currently, performance doesn't always improve, and, on code that uses
few globals (e.g., the odd file- or function- static), more often than
not is degraded by the optimization. Lengthy discussion can be found
on llvmdev (AArch64-focused; ARM has similar problems):
http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-February/082800.html
Also, it makes tooling and debuggers less useful when dealing with
globals and data sections.
GlobalMerge needs to better identify those cases that benefit, and this
will be done separately. In the meantime, move the pass to run with
-O3 rather than -O1, on both ARM and AArch64.
llvm-svn: 233024
Simplify boolean expressions with `true` and `false` using `clang-tidy`
Patch by Richard Thomson.
Differential Revision: http://reviews.llvm.org/D8520
llvm-svn: 233020
Summary:
This change makes CMake scan for lit suites and generate a target for each lit test suite. The targets follow the format check-<project>-<suite path>.
For example:
check-llvm-unit - Runs the LLVM unit tests
check-llvm-codegen-arm - Runs the ARM codeine tests
Note: These targets are not generated during multi-configuration generators (i.e. Xcode and Visual Studio) because target clutter impacts UI usability.
* Also fixed a minor issue that Duncan pointed out to me I was passing the suite to lit twice
Reviewers: chandlerc
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D8380
llvm-svn: 233009
Simplify boolean expressions using `true` and `false` with `clang-tidy`
Patch by Richard Thomson with a few other simplifications to fix
else-after-returns in the surrounding code.
Differential Revision: http://reviews.llvm.org/D8527
llvm-svn: 233005
Simplify boolean expressions using `true` and `false` with `clang-tidy`
Patch by Richard Thomson - I dropped the parens and != 0 test, for
consistency with other patches/tests like this, but I'm open to the
notion that we should add the explicit non-zero test in all these sort
of cases (non-bool assigned to a bool).
Differential Revision: http://reviews.llvm.org/D8526
llvm-svn: 233004
Simplify boolean expressions with `true` and `false` with `clang-tidy`
Patch by Richard Thomson.
Differential Revision: http://reviews.llvm.org/D8519
llvm-svn: 233002
This enables very common cases to switch to the
smaller encoding.
All of the standard LLVM canonicalizations of comparisons
are the opposite of what we want. Compares with constants
are moved to the RHS, but the first operand can be an inline
immediate, literal constant, or SGPR using the 32-bit VOPC
encoding.
There are additional bad canonicalizations that should
also be fixed, such as canonicalizing ge x, k to gt x, (k + 1)
if this makes k no longer an inline immediate value.
llvm-svn: 232988
Simplify boolean expressions involving `true` and `false` with `clang-tidy`.
Actually upon inspection a bunch of these boolean variables could be
factored away entirely anyway - using find_if and then testing the
result before using it. This also helps reduce indentation in the code
anyway - and a bunch of other related simplification fell out nearby so
I just committed all of that.
Patch by Richard Thomson (legalize@xmission.com)
Differential Revision: http://reviews.llvm.org/D8517
llvm-svn: 232984
This change is incorrect since it converts double rounding into single rounding,
which can produce different results. Instead this optimization will be done by
modifying Clang's codegen to not produce double rounding in the first place.
This reverts commit r232954.
llvm-svn: 232962
Anton tried this 5 years ago but it was reverted due to extra VMOVs
being emitted. This can be easily fixed with a liberal application
of patterns - matching loads/stores and extractelts.
llvm-svn: 232958
Specifically when the conversion is done in two steps, f16 -> f32 -> f64.
For example:
%1 = tail call float @llvm.convert.from.fp16.f32(i16 %0)
%conv = fpext float %1 to double
to:
vcvtb.f64.f16
llvm-svn: 232954
Fixing sign extension in makeLibCall for MIPS64. In MIPS64 architecture all
32 bit arguments (int, unsigned int, float 32 (soft float)) must be sign
extended. This fixes test "MultiSource/Applications/oggenc/".
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D7791
llvm-svn: 232943
Summary:
But still handle them the same way since I don't know how they differ on
this target.
Clang also has code for 'Ump', 'Utf', 'Usa', and 'Ush' but calls
llvm_unreachable() on this code path so they are not converted to a
constraint id at the moment.
No functional change intended.
Reviewers: t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D8177
llvm-svn: 232941
Because the operands of a vector SETCC node can be of a different type from the
result (and often are), it can happen that even if we'd prefer to widen the
result type of the SETCC, the operands have been split instead. In this case,
the SETCC result also must be split. This mirrors what is done in
WidenVecRes_SELECT, and should be NFC elsewhere because if the operands are not
widened the following calls to GetWidenedVector will assert (which is what was
happening in the test case).
llvm-svn: 232935
It's not intended to be polymorphically deleted. Make FoldingSet
and ContextualFoldingSet final to avoid noise from -Wnon-virtual-dtor.
No functional change intended.
llvm-svn: 232922
A build directory with a name like `build-Werror` would hit a false
positive on these `CHECK-NOT`s before, since the actual error line looks
like:
.../build-Werror/bin/llvm-as <stdin>:1:2: error: ...
Switch to using:
CHECK-NOT: error:
(note the trailing semi-colon) to avoid matching almost any file path.
llvm-svn: 232917
strchr("123!", C) != nullptr is a common pattern to check if C is one
of 1, 2, 3 or !. If the largest element of the string is smaller than
the target's register size we can easily create a bitfield and just
do a simple test for set membership.
int foo(char C) { return strchr("123!", C) != nullptr; } now becomes
cmpl $64, %edi ## range check
sbbb %al, %al
movabsq $0xE000200000001, %rcx
btq %rdi, %rcx ## bit test
sbbb %cl, %cl
andb %al, %cl ## and the two conditions
andb $1, %cl
movzbl %cl, %eax ## returning an int
ret
(imho the backend should expand this into a series of branches, but
that's a different story)
The code is currently limited to bit fields that fit in a register, so
usually 64 or 32 bits. Sadly, this misses anything using alpha chars
or {}. This could be fixed by just emitting a i128 bit field, but that
can generate really ugly code so we have to find a better way. To some
degree this is also recreating switch lowering logic, but we can't
simply emit a switch instruction and thus change the CFG within
instcombine.
llvm-svn: 232902
Modern libc's have an SSE version of memchr which is a lot faster than our
hand-rolled version. In the past I was reluctant to use it because Darwin's
memchr used a naive ridiculously slow implementation, but that has been fixed
some versions ago.
Should have zero functional impact.
llvm-svn: 232898
Currently this is only used to tweak the backend's memcpy inlining
heuristics, testing that isn't very helpful. A real test case will
follow in the next commit, where this behavior would cause a real
miscompilation.
llvm-svn: 232895
r216771 introduced a change to MemoryDependenceAnalysis that allowed it
to reason about acquire/release operations. However, this change does
not ensure that the acquire/release operations pair. Unfortunately,
this leads to miscompiles as we won't see an acquire load as properly
memory effecting. This largely reverts r216771.
This fixes PR22708.
llvm-svn: 232889
TargetMachine::getSubtargetImpl routines.
This keeps the target independent code free of bare subtarget
calls while the remainder of the backends are migrated, or not
if they don't wish to support per-function subtargets as would
be needed for function multiversioning or LTO of disparate
cpu subarchitecture types, e.g.
clang -msse4.2 -c foo.c -emit-llvm -o foo.bc
clang -c bar.c -emit-llvm -o bar.bc
llvm-link foo.bc bar.bc -o baz.bc
llc baz.bc
and get appropriate code for what the command lines requested.
llvm-svn: 232885
As preparation for removing the getSubtargetImpl() call from
TargetMachine go ahead and flip the switch on caching the function
dependent subtarget and remove the bare getSubtargetImpl call
from the X86 port. As part of this add a few tests that show we
can generate code and assemble on X86 based on features/cpu on
the Function.
llvm-svn: 232879
thumb-ness similar to the rest of the Module level asm printing
infrastructure as debug info finalization happens after the function
may be missing.
llvm-svn: 232875
If we couldn't analyze its terminator (i.e., it's an indirectbr, or some
other weirdness), we can't safely re-if-convert a predicated block,
because we can't tell whether the predicated terminator can
fallthrough (it does).
Currently, we would completely ignore the fallthrough successor. In
the added testcase, this means we used to generate:
...
@ %entry:
cmp r5, #21
ittt ne
@ %cc1f:
cmpne r7, #42
@ %cc2t:
strne.w r5, [r8]
movne pc, r10
@ %cc1t:
...
Whereas the successor of %cc1f was originally %bb1.
With the fix, we get the correct:
...
@ %entry:
cmp r5, #21
itt eq
@ %cc1t:
streq.w r5, [r11]
moveq pc, r0
@ %cc1f:
cmp r7, #42
itt ne
@ %cc2t:
strne.w r5, [r8]
movne pc, r10
@ %bb1:
...
rdar://20192768
Differential Revision: http://reviews.llvm.org/D8509
llvm-svn: 232872
Summary:
This is needed for http://reviews.llvm.org/D8507
I have no idea what stand-alone tests could be done, if needed.
Reviewers: Bigcheese, craig.topper, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8508
llvm-svn: 232859
vperm2* intrinsics are just shuffles.
In a few special cases, they're not even shuffles.
Optimizing intrinsics in InstCombine is better than
handling this in the front-end for at least two reasons:
1. Optimizing custom-written SSE intrinsic code at -O0 makes vector coders
really angry (and so I have regrets about some patches from last week).
2. Doing mask conversion logic in header files is hard to write and
subsequently read.
There are a couple of TODOs in this patch to complete this optimization.
Differential Revision: http://reviews.llvm.org/D8486
llvm-svn: 232852
With this patch, for this one exact case, we'll generate:
blendps %xmm0, %xmm1, $1
instead of:
insertps %xmm0, %xmm1, $0
If there's a memory operand available for load folding and we're
optimizing for size, we'll still generate the insertps.
The detailed performance data motivation for this may be found in D7866;
in summary, blendps has 2-3x throughput vs. insertps on widely used chips.
Differential Revision: http://reviews.llvm.org/D8332
llvm-svn: 232850
As part of PR22777, switch from `dyn_cast_or_null<>` to `cast<>` in most
`DIDescriptor` accessors. These classes are lightweight wrappers around
pointers, so the users should check for valid pointers before using
them.
This survives a Darwin clang -g bootstrap (after fixing testcases), but
it's possible the bots will complain about other configurations. I'll
fix any fallout as quickly as I can! Once this bakes for a bit I'll
remove the macros.
Note that `DebugLoc` implicitly gets stricter with this change as well,
since it forward to `DILocation`. Any code that's using `DebugLoc`
accessors should check `DebugLoc::isUnknown()` first. (BTW, I'm also
partway through a cleanup of the `DebugLoc` API to make it more obvious
what it is (a glorified pointer wrapper) and remove cruft from before
the Metadata/Value split. I'll commit soon.)
llvm-svn: 232844
The code this patch removes was there to make sure the text sections went
before the dwarf sections. That is necessary because MachO uses offsets
relative to the start of the file, so adding a section can change relaxations.
The dwarf sections were being printed at the start just to produce symbols
pointing at the start of those sections.
The underlying issue was fixed in r231898. The dwarf sections are now printed
when they are about to be used, which is after we printed the text sections.
To make sure we don't regress, the patch makes the MachO streamer assert
if CodeGen puts anything unexpected after the DWARF sections.
llvm-svn: 232842
Check return of `getDISubprogram()` before using it. A WIP patch makes
`DIDescriptor` accessors more strict (and would crash on this).
llvm-svn: 232838
The main differences are:
* Split in 32 and 64 bit functions.
* First switch on the Modifier so that we have only one non fully covered
switch.
* Map the fixup kind first to a x86_64 (or i386) specific enum, to make
it easy to handle cases like X86::reloc_riprel_4byte_movq_load.
* Switch on IsPCRel last, which reduces code duplication.
Fixes pr22308.
llvm-svn: 232837
`DL` might be null, so check for that before using accessors. A WIP
patch to make `DIDescriptors` more strict fails otherwise.
As a bonus, I think the logic is easier to follow now (despite the extra
nesting depth).
llvm-svn: 232836
A WIP patch makes `DIDescriptor` accessors more strict, which in turn
causes the `DebugInfoFinder` to crash on wrongly typed `!dbg`
attachments. Catch that error up front in
`Verifier::visitInstruction()`.
Also remove a test that we "handle" invalid `!dbg` attachments, added
back in r99938. We don't want to handle those anymore.
Note: I'm *not* recursing and verifying the debug info graph reachable
from this node; that work is already done by `verifyDebugInfo()`.
llvm-svn: 232834
Don't use the accessors in `DIImportedEntity` on a null pointer. (A WIP
patch to make `DIDescriptor` accessors more strict crashes here
otherwise.)
llvm-svn: 232833
This test is supposed to be testing whether metadata attachments to
instructions work, but it was using invalid debug info to do so. (This
was causing assertion failures in the `DebugInfoFinder` with a WIP patch
to be more strict about `DIDescriptor` accessors.)
Rather than fix the debug info -- which is better tested elsewhere --
just test the IR feature directly.
llvm-svn: 232828
When estimating SROA savings, we want to see if an address is derived
off an alloca in the caller. For store instructions, operand 1 is the
address operand, but the current code uses operand 0. Use
getPointerOperand for loads and stores to fix this.
Patch by Easwaran Raman.
http://reviews.llvm.org/D8425
llvm-svn: 232827
LocalStackSlotPass assumes that isFrameOffsetLegal doesn't change its
answer when the base register changes. Unfortunately this isn't true
in thumb1, where SP-based loads allow a larger offset than
non-SP-based loads, and this causes the base register reuse code to
generate instructions that are unencodable, causing an assertion
failure.
Solve this by adding a BaseReg parameter to isFrameOffsetLegal, which
ARMBaseRegisterInfo can then make use of to give the correct answer.
Differential Revision: http://reviews.llvm.org/D8419
llvm-svn: 232825
numbers before emission.
This removes a dependency on being able to access TRI at the module
level and is similar to the DwarfExpression handling. I've modified
the debug support into print/dump routines that'll do the same dumping
but is now callable anywhere and if TRI isn't available will go ahead
and just print out raw register numbers.
llvm-svn: 232821
nullptr so that users get an earlier dereferencing error and
so that we can use it to conditionalize access to MachineFunction
specific data.
llvm-svn: 232820
With the option -outline-optional-branches, LLVM will place optional
branches out of line (more details on r231230).
With this patch, this is not done for short optional branches. A short
optional branch is a branch containing a single block with an
instruction count below a certain threshold (defaulting to 3). Still
everything is guarded under -outline-optional-branches).
Outlining a short branch can't significantly improve code locality. It
can however decrease performance because of the additional jmp and in
cases where the optional branch is hot. This fixes a compile time
regression I have observed in a benchmark.
Review: http://reviews.llvm.org/D8108
llvm-svn: 232802
This is needed for AVX512 masked scatter/gather support.
The R600 change is necessary to remove a hack that was working around the lack of multiple results.
llvm-svn: 232798
Don't use `DebugLoc` accessors if we're pointing at null, which will be
a problem after a WIP patch to make the `DIDescriptor` accessors more
strict. Caught by Frontend/profile-sample-use-loc-tracking.c (in
clang).
llvm-svn: 232792
Remove the separate `DebugInfoVerifier` class, as a partial step toward
better integrating debug info verification with the `Verifier`.
Right now, verification of debug info is kind of a mess.
- There are `DIDescriptor::Verify()` checks live in `DebugInfo.cpp`.
These return `bool`, and there's no way to see (except by opening a
debugger) why they fail.
- We rely on `DebugInfoFinder` to traverse the debug info graph and
dig up nodes. However, the regular `Verifier` visits many of these
nodes when it calls into debug info intrinsic operands. Visiting
twice and running different checks is kind of absurd.
- Moreover, `DebugInfoFinder` asserts on failed type resolution -- the
verifier should never assert!
By integrating the two verifiers, I'm aiming at solving these problems
(work to be done, obviously). Verification can be localized to the
`Verifier`; we can use a naive `MDNode` operand traversal to find all
the nodes; we can verify type references instead of asserting on
failure.
There are `assert()`s sprinkled throughout the optimizer and dwarf
backend on `DIDescriptor::Verify()` checks. This is a hangover from
when the debug info verifier was off, so I plan to remove them as I go
(once I confirm that the checks are done at verification time).
Note: to keep the behaviour of only running the debug info verifier when
-verify succeeds, I've added an `EverBroken` flag. Once the
`DebugInfoFinder` assertions are gone and the two traversals have been
merged, I expect to be able to remove this.
llvm-svn: 232790
This works in a similar way to the gold plugin tests. We search for a compatible
linker on $PATH and use it to run tests against our just-built libLTO. To start
with, test the just added opt level functionality.
Differential Revision: http://reviews.llvm.org/D8472
llvm-svn: 232785
This is very related to the bug fixed in r174431. The problem is that
SelectionDAG does not include alignment in the uniquing of loads and
stores. When an otherwise no-op DAGCombine would increase the alignment
of a load or store, the original node would be returned (with the
alignment increased), which would cause the node not to be processed by
any further DAGCombines.
I don't have a direct testcase for this that manifests on an in-tree
target, but I did see some noise in the tests for other targets and have
updated them for it.
llvm-svn: 232780
This enables us to remove calls to the subtarget from the TargetMachine
and with a small hack for backends that require global subtarget
information for module level code generation, e.g. mips abi flags, as
mentioned in a fixme in the code.
llvm-svn: 232776
This switches the sense of the i32 values and updates the test cases.
We can also use CHECK-SAME to clean up some tests, and reduce the visual
noise from bitcasts.
llvm-svn: 232774
Another case of x86-specific shuffle strength reduction:
avoid generating insert*128 instructions with index 0 because
they are slower than their non-lane-changing blend equivalents.
Shuffle lowering already catches most of these cases, but
the zero vector case and some other paths such as in the
modified test in vector-shuffle-256-v32.ll were getting
through.
Differential Revision: http://reviews.llvm.org/D8366
llvm-svn: 232773
Remove `DebugInfoVerifierLegacyPass` and the `-verify-di` pass.
Instead, call into the `DebugInfoVerifier` from inside
`VerifierLegacyPass::finalizeModule()`. This better matches the logic
in `verifyModule()` (used by the new PassManager), avoids requiring two
separate passes to verify the IR, and makes the API for "add a pass to
verify the IR" simple.
Note: the `-verify-debug-info` flag still works (for now, at least;
eventually it might make sense to just remove it).
llvm-svn: 232772
Each use of the byte array uses a different alias. This makes the
backend less likely to reuse previously computed byte array addresses,
improving the security of the CFI mechanism based on this pass.
Differential Revision: http://reviews.llvm.org/D8455
llvm-svn: 232770
This change also introduces a link-time optimization level of 1. This
optimization level runs only the globaldce pass as well as cleanup passes for
passes that run at -O0, specifically simplifycfg which cleans up lowerbitsets.
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20150316/266951.html
llvm-svn: 232769
`StripDebug` was only used by tools/opt/opt.cpp in
`AddStandardLinkPasses()`, but opt.cpp adds the same pass based on its
command-line flag before it calls `AddStandardLinkPasses()`. Stripping
debug info twice isn't very useful.
llvm-svn: 232765
When we encounter a global with a comdat, rather than iterating over
every global in the module to find globals in the same comdat, store the
members in a multimap. This effectively lowers the complexity to O(N log N),
improving performance significantly for large modules such as might be
encountered during LTO.
It looks like we used to do something like this until r219191.
No functional change.
Differential Revision: http://reviews.llvm.org/D8431
llvm-svn: 232743
Summary:
CUDA 7.0's libdevice uses slightly different IR to call __nvvm_reflect
and that triggers an assertion in nvvm_reflect optimization pass. This
change allows nvvm_reflect pass to deal with both old and new ways to
pass an argument to __nvvm_reflect.
Test Plan: ninja check-all
Reviewers: eliben, echristo
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8399
llvm-svn: 232732
The dependencies for cross-built tablegen were a bit confused. This fixes that. The following dependencies are now enforced:
(1) Tablegen tasks depend on the native tablegen
(2) Native tablegen depends on the cross-compiled tablegen
Although the native tablegen doesn't actually require the cross tablegen, having this dependency forces the native tablegen to rebuild whenever the cross tablegen changes.
llvm-svn: 232730
NFC currently but required as a prerequisite for using
the Microsoft resource compiler in conjunction with
CMake's ninja generator, which knows how to filter flags
appropriately, but not definitions.
Differential Revision: http://reviews.llvm.org/D8188
llvm-svn: 232727
This is an ugly hack to fix the configure --enable-shared build. It
turns out that *every cl::opt in LLVM* shows up in *every tool* in
that configuration, which is hopelessly broken. This skirts around the
issue by not colliding with another option's name, for now.
I've also simplified the option implementation - the other "color"
option used cl::boolOrDefault and was much nicer than what I'd written
before.
llvm-svn: 232704
There are two main advantages to doing this
* Targets that only need to handle one of the formats specially don't have
to worry about the others. For example, x86 now only registers a
constructor for the COFF streamer.
* Changes to the arguments passed to one format constructor will not impact
the other formats.
llvm-svn: 232699
The clang-hexagon elf bot was complaining that "Option 'color'
registered more than once!":
http://lab.llvm.org:8011/builders/clang-hexagon-elf/builds/24425
I don't understand why this error is happening, and I don't see it on
any other bots or on my own machine, so I'm kind of grasping at
straws. Try using an unscoped enum and specifying a cl::init to see if
they help.
llvm-svn: 232698
Some subregisters are only to indicate different access sizes, while not
providing any way to actually divide the register up into multiple
disjunct parts. Avoid tracking subregister liveness in these cases as it
is not beneficial.
Differential Revision: http://reviews.llvm.org/D8429
llvm-svn: 232695
This should bring the windows bots back.
It is a bit ugly, but it is better than what we had before: The triple would
say that the object format was COFF, but llc/llvm-mc would produce an ELF.
llvm-svn: 232683
Summary:
This change makes CMake scan for lit suites and generate a target for each lit test suite. The targets follow the format check-<project>-<suite path>.
For example:
check-llvm-unit - Runs the LLVM unit tests
check-llvm-codegen-arm - Runs the ARM codeine tests
Note: These targets are not generated during multi-configuration generators (i.e. Xcode and Visual Studio) because target clutter impacts UI usability.
Reviewers: chandlerc
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D8380
llvm-svn: 232671
as we don't necessarily need to do this yet - though we could move
the base class to the TargetMachine as it isn't subtarget dependent.
This reverts commit r232103.
llvm-svn: 232665
No outlining is necessary for SEH catch blocks. Use the blockaddr of the
handler in place of the usual outlined function.
Reviewers: majnemer, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D8370
llvm-svn: 232664
The MSVC linker won't produce a .lib file for an executable that doesn't
export anything, and LLVM doesn't maintain dllexport annotations or .def
files listing all C++ symbols. It also doesn't support exporting all
symbols, like binutils ld.
CMake 3.2 changed the Ninja generator to list both the .exe and .lib
files as outputs of executable build targets. Ninja would always re-link
executables with ENABLE_EXPORTS because the .lib output file was not
present, and therefore the target was out of date.
llvm-svn: 232662
Currently v2i64 vectors shifts (non-equal shift amounts) are scalarized, costing 4 x extract, 2 x x86-shifts and 2 x insert instructions - and it gets even more awkward on 32-bit targets.
This patch separately shifts the vector by both shift amounts and then shuffles the partial results back together, costing 2 x shuffles and 2 x sse-shifts instructions (+ 2 movs on pre-AVX hardware).
Note - this patch only improves the SHL / LSHR logical shifts as only these are supported in SSE hardware.
Differential Revision: http://reviews.llvm.org/D8416
llvm-svn: 232660