We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
In cases where an operation has an argument or result named 'property', the
ODS-generated python fails on import because the `@property` resolves to the
`property` operation argument instead of the builtin `@property` decorator. We
should always use the fully qualified decorator name.
Reviewed By: mikeurbach
Differential Revision: https://reviews.llvm.org/D106106
There are two places in current deviceRTLs where it computes parallel level explicitly,
which is basically the functionality of `__kmpc_parallel_level`. Starting from
D105787, we plan to introduce a series of function call folding based on information
that can be deducted during compilation time. Computation of parallel level is
the next target. This patch makes steps for the optimization.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D105955
This configuration is interesting because GCC has a different level of
strictness for some C++ rules. In particular, it implements the older
standards more stringently than Clang, which can help find places where
we are non-conforming (especially in the test suite).
Differential Revision: https://reviews.llvm.org/D105936
It was possible to re-add a module to a shared in-memory module cache
when search paths are changed. This can eventually cause a crash if the
original module is referenced after this occurs.
1. Module A depends on B
2. B exists in two paths C and D
3. First run only has C on the search path, finds A and B and loads
them
4. Second run adds D to the front of the search path. A is loaded and
contains a reference to the already compiled module from C. But
searching finds the module from D instead, causing a mismatch
5. B and the modules that depend on it are considered out of date and
thus rebuilt
6. The recompiled module A is added to the in-memory cache, freeing
the previously inserted one
This can never occur from a regular clang process, but is very easy to
do through the API - whether through the use of a shared case or just
running multiple compilations from a single `CompilerInstance`. Update
the compilation to return early if a module is already finalized so that
the pre-condition in the in-memory module cache holds.
Resolves rdar://78180255
Differential Revision: https://reviews.llvm.org/D105328
Use double pound at the start of the line to differentiate comments from
statements for Lit or FileCheck.
I will also use this small commit to check my commit access.
Differential Revision: https://reviews.llvm.org/D106103
We want to incorporate some of the optimization passes in bind opcodes from ld64.
This revision makes no functional changes but to start storing opcodes in intermediate
containers in preparation for implementing the optimization passes in a follow-up revision.
Differential Revision: https://reviews.llvm.org/D105866
Since we're still building on top of the MVT based infrastructure, we
need to track the pointer type/address space on the side so we can end
up with the correct pointer LLTs when interpreting CCValAssigns.
This change adds AllocateMemory and DeallocateMemory methods to the SBProcess
API, so that clients can allocate and deallocate memory blocks within the
process being debugged (for storing JIT-compiled code or other uses).
(I am developing a debugger + REPL using the API; it will need to store
JIT-compiled code within the target.)
Reviewed By: clayborg, jingham
Differential Revision: https://reviews.llvm.org/D105389
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and instrisics for population
count, reversed load and store related operations.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D106021
In the device runtime there are many function calls to `__kmpc_is_spmd_exec_mode`
to query the execution mode of current kernels. In many cases, user programs
only contain target region executing in one mode. As a consequence, those runtime
function calls will only return one value. If we can get rid of these function
calls during compliation, it can potentially improve performance.
In this patch, we use `AAKernelInfo` to analyze kernel execution. Basically, for
each kernel (device) function `F`, we collect all kernel entries `K` that can
reach `F`. A new AA, `AAFoldRuntimeCall`, is created for each call site. In each
iteration, it will check all reaching kernel entries, and update the folded value
accordingly.
In the future we will support more function.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D105787
This adds some level of type safety, allows helper functions to be added for
specific opcodes for free, and also allows us to succinctly check for class
membership with the usual dyn_cast/isa/cast functions.
To start off with, add variants for the different load/store operations with some
places using it.
Differential Revision: https://reviews.llvm.org/D105751
This patch adds a form window to attach a process, either by PID or by
name. This patch also adds support for dynamic field visibility such
that the form delegate can hide or show certain fields based on some
conditions.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D105655
D104806 broke some uses of getMinusSCEV() in DependenceAnalysis:
subtraction with different pointer bases returns a SCEVCouldNotCompute.
Make sure we avoid cases involving such subtractions.
Differential Revision: https://reviews.llvm.org/D106099
The maskmovdqu instruction is an odd one: it has a 32-bit and a 64-bit
variant, the former using EDI, the latter RDI, but the use of the
register is implicit. In 64-bit mode, a 0x67 prefix can be used to get
the version using EDI, but there is no way to express this in
assembly in a single instruction, the only way is with an explicit
addr32.
This change adds support for the instruction. When generating assembly
text, that explicit addr32 will be added. When not generating assembly
text, it will be kept as a single instruction and will be emitted with
that 0x67 prefix. When parsing assembly text, it will be re-parsed as
ADDR32 followed by MASKMOVDQU64, which still results in the correct
bytes when converted to machine code.
The same applies to vmaskmovdqu as well.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D103427
This bug was introduced with D105730 / 25ee55c0ba .
If we are not converting all of the operations of a reduction
into a vector op, we need to preserve the existing select form
of the remaining ops. Otherwise, we are potentially leaking
poison where it did not in the original code.
Alive2 agrees that the version that freezes some inputs
and then falls back to scalar is correct:
https://alive2.llvm.org/ce/z/erF4K2
Intrinsics can only be called directly, taking their address is not
legal. This is currently only enforced for intrinsics that have an
ID, rather than all intrinsics. Adjust the check to cover all
intrinsics.
This came up in D106013.
Differential Revision: https://reviews.llvm.org/D106095
Changes include the following:
1. Single iteration reduction loops being sibling fused at innermost insertion level
are skipped from being considered as sequential loops.
Otherwise, the slice bounds of these loops is reset.
2. Promote loops that are skipped in previous step into outer loops.
3. Two utility function - buildSliceTripCountMap, getSliceIterationCount - are moved from
mlir/lib/Transforms/Utils/LoopFusionUtils.cpp to mlir/lib/Analysis/Utils.cpp
Reviewed By: bondhugula, vinayaka-polymage
Differential Revision: https://reviews.llvm.org/D104249
Summary:
in the function PPCFunctionInfo::getParmsType(), there is if (Bits > 31 || (Bits > 30 && (Elt != FixedType || hasVectorParms())))
when the Bit is 31 and the Elt is not FixedType(for example the Elt is FloatingType) , the 31th bit will be not encoded, it leave the bit as zero, when the function Expected<SmallString<32>> XCOFF::parseParmsType() the original implement
**// unsigned ParmsNum = FixedParmsNum + FloatingParmsNum;
while (Bits < 32 && ParsedNum < ParmsNum) {
...
}//**
it will look the 31 bits (zero) as FixedType. which should be FloatingType, and get a error.
Reviewers: Jason Liu,ZarkoCA
Differential Revision: https://reviews.llvm.org/D105023
When a target triple is specified in CMake via XXX_TARGET_TRIPLE, we tried
passing the --target=<...> flag to the compiler. However, not all compilers
support that flag (e.g. GCC, which is not a cross-compiler). As a result,
setting e.g. LIBCXX_TARGET_TRIPLE=<host-triple> would end up trying to
pass --target=<host-triple> to GCC, which breaks everything because the
flag isn't even supported.
This commit only adds `--target=<...>` & friends to the flags if it is
supported by the compiler.
One could argue that it's confusing to pass LIBCXX_TARGET_TRIPLE=<...>
and have it be ignored. That's correct, and one possibility would be
to assert that the requested triple is the same as the host triple when
we know the compiler is unable to cross-compile. However, note that this
is a pre-existing issue (setting the TARGET_TRIPLE variable never had an
influence on the flags passed to the compiler), and also fixing that is
starting to look like reimplementing a lot of CMake logic that is already
handled with CMAKE_CXX_COMPILER_TARGET.
Differential Revision: https://reviews.llvm.org/D106082
The XFAIL comments about VCRuntime not providing aligned operator new
are outdated; these days VCRuntime does provide them.
However, the tests used to fail on Windows, as the pointers allocated
with an aligned operator new (which is implemented with _aligned_malloc
on Windows) can't be freed using std::free() on Windows (but they need
to be freed with the corresponding function _aligned_free instead).
Instead override the aligned operator new to return a dummy suitably
aligned pointer instead, like other tests that override aligned operator
new.
Also override `operator delete[]` instead of plain `operator delete`
in the array testcase; the fallback from `operator delete[]` to
user defined `operator delete` doesn't work in all DLL build
configurations on Windows.
Also expand the TEST_NOEXCEPT macros, as these tests only are built
in C++17 mode.
By providing the aligned operator new within the tests, this also makes
these test cases pass when testing back deployment on macOS 10.9.
Differential Revision: https://reviews.llvm.org/D105962
Changed where an #endif was placed because previously it
prevented three macro definitions from being enable in Windows.
Reviewed By: sivachandra
Differential Revision: https://reviews.llvm.org/D106087
D55348 replaced @objc_msgSend with @llvm.objc.msgSend in tests
together with many other objc intrinsics. However, this is not a
recognized objc intrinsic (https://llvm.org/docs/LangRef.html#objective-c-arc-runtime-intrinsics)
and does not receive special treatment by LLVM. It's likely that
uses of this function were renamed by accident.
This came up in D106013, because the address of @llvm.objs.msgSend
is taken, something which is normally not allowed for intrinsics.
Differential Revision: https://reviews.llvm.org/D106094
`intermediate_commits` is a list of full SHAs, and `across_ref` may/may
not be a full SHA (or a SHA at all). We already have `across_sha`, which
is the resolved form of `across_ref`, so use that instead.
Thanks to probinson for catching this in post-commit review of
https://reviews.llvm.org/D105578!
x86_64-linux-gnu and x86_64-linux-gnux32 use different ABIs and objects
built for one cannot be used for the other. In order to build and use
compiler-rt for x32, we need to treat x32 as a new arch there. This
updates the driver to search using the new arch name.
Reviewed By: glaubitz
Differential Revision: https://reviews.llvm.org/D100148
This format was missing from the support library. Although there are some
subtleties reading in an external format for int64 as double, there is no
good reason to omit support for this data type form the support library.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D106016
Currently we don't lock ScopedErrorReportLock around fork
and it mostly works becuase tsan has own report_mtx that
is locked around fork and tsan reports.
However, sanitizer_common code prints some own reports
which are not protected by tsan's report_mtx. So it's better
to lock ScopedErrorReportLock explicitly.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D106048
The ceiling variant was recently added (due to the work towards D105216), and we're spending a lot of time trying to find optimizations for the expression. This patch brute forces the space of i8 unsigned divides and checks that we get a correct (well consistent with APInt) result for both udiv and udiv ceiling.
(This is basically what I've been doing locally in a hand rolled C++ program, and I realized there no good reason not to check it in as a unit test which directly exercises the logic on constants.)
Differential Revision: https://reviews.llvm.org/D106083
The feature was always defined, which means that the two test cases
guarded by it were never run.
Differential Revision: https://reviews.llvm.org/D106062
`clang -fuse-ld=lld -static-pie -fpie` produced executable
currently crashes and this patch makes it work.
See https://sourceware.org/bugzilla/show_bug.cgi?id=27164
and https://sourceware.org/pipermail/libc-alpha/2021-July/128810.html
While it seems unreasonable to keep csu/libc-start.c ARCH_APPLY_IREL unclear in
static-pie mode and have an unneeded diff -u =(ld.bfd --verbose) =(ld.bfd -pie
--verbose) difference, glibc folks don't want to fix their code.
I feel sad about that but this patch can remove an iffy condition for lld/ELF
as well: `needsInterpSection()`.
This patch makes vector spills valid for tail predication when all loads
from the same stack slot are within the loop
Differential Revision: https://reviews.llvm.org/D105443
This patch implements the `__popcntb` XL compatibility builtin for 32bit in the frontend and backend. This patch also updates tests for `__popcntb` and other XL Compat sync related builtins.
Reviewed By: #powerpc, nemanjai, amyk
Differential Revision: https://reviews.llvm.org/D105360