The code in CGExpr was added back in 2012 (r165536) but not exercised in tests
until recently.
Detected on the MemorySanitizer bootstrap bot.
llvm-svn: 190521
This reverts commit r189320.
Alexey Samsonov and Dmitry Vyukov presented some arguments for keeping
these around - though it still seems like those tasks could be solved by
a tool just using the symbol table. In a very small number of cases,
thunks may be inlined & debug info might be able to save profilers &
similar tools from misclassifying those cases as part of the caller.
The extra changes here plumb through the VarDecl for various cases to
CodeGenFunction - this provides better fidelity through a few APIs but
generally just causes the CGF::StartFunction to fallback to using the
name of the IR function as the name in the debug info.
The changes to debug-info-global-ctor-dtor.cpp seem like goodness. The
two names that go missing (in favor of only emitting those names as
linkage names) are names that can be demangled - emitting them only as
the linkage name should encourage tools to do just that.
Again, thanks to Dinesh Dwivedi for investigation/work on this issue.
llvm-svn: 189421
- __func__ or __FUNCTION__ returns captured statement's parent
function name, not the one compiler generated.
Differential Revision: http://llvm-reviews.chandlerc.com/D1491
Reviewed by bkramer
llvm-svn: 189219
1. We now print the return type of lambdas and return type deduced functions
as "auto". Trailing return types with decltype print the underlying type.
2. Use the lambda or block scope for the PredefinedExpr type instead of the
parent function. This fixes PR16946, a strange mismatch between type of the
expression and the actual result.
3. Verify the type in CodeGen.
4. The type for blocks is still wrong. They are numbered and the name is not
known until CodeGen.
llvm-svn: 188900
Summary:
We would crash in CodeGen::CodeGenModule::EmitUuidofInitializer
because our attempt to enter CodeGen::CodeGenModule::EmitConstantValue
will be foiled: the type of the constant value is incomplete.
Instead, create an unnamed type with the proper layout on all platforms.
Punt the problem of wrongly defined struct _GUID types to the user.
(It's impossible because the TU may never get to see the type and thus
we can't verify that it is suitable.)
This fixes PR16856.
Reviewers: rsmith, rnk, thakis
Reviewed By: rnk
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1375
llvm-svn: 188481
Summary:
UBSan was checking for alignment of the derived class on the pointer to
the base class, before converting. With some class hierarchies, this could
generate false positives.
Added test-case.
llvm-svn: 187948
Restore it after each argument is emitted. This fixes the scope info for
inlined subroutines inside of function argument expressions. (E.g.,
anything STL).
rdar://problem/12592135
llvm-svn: 187240
This is the same way GenericSelectionExpr works, and it's generally a
more consistent approach.
A large part of this patch is devoted to caching the value of the condition
of a ChooseExpr; it's needed to avoid threading an ASTContext into
IgnoreParens().
Fixes <rdar://problem/14438917>.
llvm-svn: 186738
Introduce CXXStdInitializerListExpr node, representing the implicit
construction of a std::initializer_list<T> object from its underlying array.
The AST representation of such an expression goes from an InitListExpr with a
flag set, to a CXXStdInitializerListExpr containing a MaterializeTemporaryExpr
containing an InitListExpr (possibly wrapped in a CXXBindTemporaryExpr).
This more detailed representation has several advantages, the most important of
which is that the new MaterializeTemporaryExpr allows us to directly model
lifetime extension of the underlying temporary array. Using that, this patch
*drastically* simplifies the IR generation of this construct, provides IR
generation support for nested global initializer_list objects, fixes several
bugs where the destructors for the underlying array would accidentally not get
invoked, and provides constant expression evaluation support for
std::initializer_list objects.
llvm-svn: 183872
were lacking ExprWithCleanups nodes in some cases where the new approach to
lifetime extension needed them).
Original commit message:
Rework IR emission for lifetime-extended temporaries. Instead of trying to walk
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183859
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183721
EmitCapturedStmt creates a captured struct containing all of the captured
variables, and then emits a call to the outlined function. This is similar in
principle to EmitBlockLiteral.
GenerateCapturedFunction actually produces the outlined function. It is based
on GenerateBlockFunction, but is much simpler. The function type is determined
by the parameters that are in the CapturedDecl.
Some changes have been added to this patch that were reviewed as part of the
serialization patch and moving the parameters to the captured decl.
Differential Revision: http://llvm-reviews.chandlerc.com/D640
llvm-svn: 181536
a lambda.
Bug #1 is that CGF's CurFuncDecl was "stuck" at lambda invocation
functions. Fix that by generally improving getNonClosureContext
to look through lambdas and captured statements but only report
code contexts, which is generally what's wanted. Audit uses of
CurFuncDecl and getNonClosureAncestor for correctness.
Bug #2 is that lambdas weren't specially mapping 'self' when inside
an ObjC method. Fix that by removing the requirement for that
and using the normal EmitDeclRefLValue path in LoadObjCSelf.
rdar://13800041
llvm-svn: 181000
Add a CXXDefaultInitExpr, analogous to CXXDefaultArgExpr, and use it both in
CXXCtorInitializers and in InitListExprs to represent a default initializer.
There's an additional complication here: because the default initializer can
refer to the initialized object via its 'this' pointer, we need to make sure
that 'this' points to the right thing within the evaluation.
llvm-svn: 179958
non-constant constructors or non-trivial destructors. Plus bugfixes for
thread_local references bound to temporaries (the temporaries themselves are
lifetime-extended to become thread_local), and the corresponding case for
std::initializer_list.
llvm-svn: 179496
For struct-path aware TBAA, we used to use scalar type node as the scalar tag,
which has an incompatible format with the struct path tag. We now use the same
format: base type, access type and offset.
We also uniformize the scalar type node and the struct type node: name, a list
of pairs (offset + pointer to MDNode). For scalar type, we have a single pair.
These are to make implementaiton of aliasing rules easier.
llvm-svn: 179335
For this source:
const int &ref = someStruct.bitfield;
We used to generate this AST:
DeclStmt [...]
`-VarDecl [...] ref 'const int &'
`-MaterializeTemporaryExpr [...] 'const int' lvalue
`-ImplicitCastExpr [...] 'const int' lvalue <NoOp>
`-MemberExpr [...] 'int' lvalue bitfield .bitfield [...]
`-DeclRefExpr [...] 'struct X' lvalue ParmVar [...] 'someStruct' 'struct X'
Notice the lvalue inside the MaterializeTemporaryExpr, which is very
confusing (and caused an assertion to fire in the analyzer - PR15694).
We now generate this:
DeclStmt [...]
`-VarDecl [...] ref 'const int &'
`-MaterializeTemporaryExpr [...] 'const int' lvalue
`-ImplicitCastExpr [...] 'int' <LValueToRValue>
`-MemberExpr [...] 'int' lvalue bitfield .bitfield [...]
`-DeclRefExpr [...] 'struct X' lvalue ParmVar [...] 'someStruct' 'struct X'
Which makes a lot more sense. This allows us to remove code in both
CodeGen and AST that hacked around this special case.
The commit also makes Clang accept this (legal) C++11 code:
int &&ref = std::move(someStruct).bitfield
PR15694 / <rdar://problem/13600396>
llvm-svn: 179250
Added TBAABaseType and TBAAOffset in LValue. These two fields are initialized to
the actual type and 0, and are updated in EmitLValueForField.
Path-aware TBAA tags are enabled for EmitLoadOfScalar and EmitStoreOfScalar.
Added command line option -struct-path-tbaa.
llvm-svn: 178797
the balance between expected behavior and compatibility with the gdb
testsuite.
(GDB gets confused if we break an expression into multiple debug
stmts so we enable this behavior only for inlined functions. For the
full experience people can still use -gcolumn-info.)
llvm-svn: 177164
aggregate types in a profoundly wrong way that has to be
worked around in every call site, to getEvaluationKind,
which classifies and distinguishes between all of these
cases.
Also, normalize the API for loading and storing complexes.
I'm working on a larger patch and wanted to pull these
changes out, but it would have be annoying to detangle
them from each other.
llvm-svn: 176656
calls and declarations.
LLVM has a default CC determined by the target triple. This is
not always the actual default CC for the ABI we've been asked to
target, and so we sometimes find ourselves annotating all user
functions with an explicit calling convention. Since these
calling conventions usually agree for the simple set of argument
types passed to most runtime functions, using the LLVM-default CC
in principle has no effect. However, the LLVM optimizer goes
into histrionics if it sees this kind of formal CC mismatch,
since it has no concept of CC compatibility. Therefore, if this
module happens to define the "runtime" function, or got LTO'ed
with such a definition, we can miscompile; so it's quite
important to get this right.
Defining runtime functions locally is quite common in embedded
applications.
llvm-svn: 176286